Skip to main content
Log in

Attenuated quantum confinement of the exciton in semiconductor nanoparticles

  • Short communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new effect, called attenuated quantum confinement, is described using a theoretical approach, based on the effective mass approximation. It assumes that the exciton, generated in a semiconductor nanocrystal, can penetrate the medium outside the crystal boundary. An equation is derived for the energy of attenuated quantum confinement depending on the penetration depth and mass of exciton outside the crystalline core. It gives lower absorption energy, which is observed experimentally for very small nanocrystals, compared to that predicted by usual quantum confinement. The penetration depth calculated for compound semiconductors is found to be of the same magnitude as that of the thickness of organic capping layer for CdS, CdSe, PbS and InAs nanoparticles. Our finding can also explain other practical processes of charge generation and transportation in a matrix with embedded nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) J Phys Chem B 101:9463

    Article  CAS  Google Scholar 

  2. Efros AlL, Efros AL (1982) Sov Phys Semicond 16:772

    Google Scholar 

  3. Brus LE (1983) J Chem Phys 79:5566

    Article  CAS  Google Scholar 

  4. Yoffe AD (1993) Adv Phys 42:173

    Article  CAS  Google Scholar 

  5. Weller H, Schmidt HM, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E (1986) Chem Phys Lett 124:557

    Article  CAS  Google Scholar 

  6. Wang Y, Herron N, Mahler W, Suna A (1989) J Opt Soc Am B 6:808

    Article  CAS  Google Scholar 

  7. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Article  CAS  Google Scholar 

  8. Peng X, Wickham J, Alivisatos AP (1998) J Am Chem Soc 120:5343

    Article  CAS  Google Scholar 

  9. Dushkin CD, Saita S, Yoshie K, Yamaguchi Y (2000) Adv Colloid Interface Sci 88:37

    Article  PubMed  CAS  Google Scholar 

  10. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Nature 383:802

    Article  CAS  Google Scholar 

  11. Masumoto Y (1996) J Luminescence 70:386

    Article  CAS  Google Scholar 

  12. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (2000) Japan J Appl Phys Part 1 39:4006

    Article  Google Scholar 

  13. Fojtik A, Weller H, Koch U, Henglein A (1984) Ber Bunsenges Phys Chem 88:969

    CAS  Google Scholar 

  14. Kittel C (1986) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  15. Wang Y, Suna A, Mahler W, Kasowski R (1987) J Chem Phys 87:7315

    Article  CAS  Google Scholar 

  16. Guzelian AA, Banin U, Kadavanich AV, Peng X, Alivisatos AP (1996) Appl Phys Lett 69:1432

    Article  CAS  Google Scholar 

  17. Schlamp MC, Peng X, Alivisatos AP (1997) J Appl Phys 82:5837

    Article  CAS  Google Scholar 

  18. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dushkin, C., Papazova, K., Dushkina, N. et al. Attenuated quantum confinement of the exciton in semiconductor nanoparticles. Colloid Polym Sci 284, 80–85 (2005). https://doi.org/10.1007/s00396-005-1327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1327-0

Keywords

Navigation