Colloid and Polymer Science

, Volume 283, Issue 10, pp 1116–1122 | Cite as

Colloid chemical characterisation of layered titanates, their hydrophobic derivatives and self-assembled films

  • Szilvia Papp
  • Imre DékányEmail author
Original Contributions


Na2Ti3O7, with layered structure, was prepared from a 1:3 molar mixture of powdered Na2CO3 and TiO2 by heating at 800 °C for 2 h. The Na+ ions were exchanged for H+ ions by hydrochloric acid treatment; next, n-butylamine, n-octylamine, n-decylamine or n-dodecylamine were incorporated at pH=3.6–3.8. It was proven by XRD measurements that, as the length of the alkyl chain of the amines was increased, smaller amounts of amines were intercalated under identical conditions. H2Ti3O7 samples dispersed in liquids of various compositions and polarities were used for the preparation of self-assembled titanate/polymer films for further sensor applications. Titanates, their composites with alkyl amines and the self-assembled hybrid structures were characterized by X-ray diffraction, thermoanalytical, optical, electron and atomic force microscopic measurements.


Trititanate Self-assembling Hybrid films Titanate/polymer nanocomposites 



The authors wish to thank the Hungarian National Scientific Fund (OTKA) T 034430, F 042715 and M045609, for their financial support.


  1. 1.
    Andersson S, Wadsley AD (1961) Acta Cryst 15:663Google Scholar
  2. 2.
    Andersson S, Wadsley AD (1961) Acta Cryst 14:1245CrossRefGoogle Scholar
  3. 3.
    Easteal AJ, Udy DJ (1972) High Temperature Sci 4:487Google Scholar
  4. 4.
    Izawa H, Kikkawa S, Koizumi M (1983) Polyhedron 2(8):741CrossRefGoogle Scholar
  5. 5.
    Sasaki T, Watanabe M, Komatsu Y, FujikiY (1985) Inorg Chem 24(14):2265Google Scholar
  6. 6.
    Beneke K, Lagaly G (1978) Z Naturforschung 33b:564Google Scholar
  7. 7.
    Lagaly G, Beneke K (1991) Colloid Polymer Sci 269:1198CrossRefGoogle Scholar
  8. 8.
    Izawa H, Kikkawa S, Koizumi M (1982) J Phys Chem 86(25):5023Google Scholar
  9. 9.
    Feist TP, Mocarski SJ, DaviesPK, Jacobson AJ, Lewandowski JT (1988) Solid State Ionic 28-30(2):1338CrossRefGoogle Scholar
  10. 10.
    Kikkawa S, Yasuda F, Koizumi M (1985) Mater Res Bull 20(10):1221CrossRefGoogle Scholar
  11. 11.
    Nunes LM, Souza AG, Farias RF (2001) J Alloys Compounds 319(1-2):94CrossRefGoogle Scholar
  12. 12.
    Airoldia C, Nunes LM, Farias RF (2000) Pergamon Mater Res Bull 35:2081CrossRefGoogle Scholar
  13. 13.
    Ogawa M, Takizawa Y (1999) Chem Mater 11(1):30CrossRefGoogle Scholar
  14. 14.
    Sukpirom N, Lerner MM (2001) Chem Mater 13:2179Google Scholar
  15. 15.
    Sukpirom N, Lerner MM (2003) Mater Sci Eng A 354(1-2):180CrossRefGoogle Scholar
  16. 16.
    Yang J, Li D, Wang HZ, Wang X, Yang XJ, Lu LD (2001) Mater Lett 50(4):230CrossRefGoogle Scholar
  17. 17.
    Cheng S, Tsai SJ, Lee YF (1995) Catalysis Today 26(1):87CrossRefGoogle Scholar
  18. 18.
    Zheng S, Yin D, Miao W, Anderson GK (1998) J Photochem Photobiol A Chem 117(2):105CrossRefGoogle Scholar
  19. 19.
    Morawski AW, Grzechulska J, Kalucki K (1996) Phys Chem Solids 57(6-8):1011CrossRefGoogle Scholar
  20. 20.
    Sato T, Yamamoto Y, Fujishiro Y, Uchida S (1996) J Chem Soc Faraday Trans 92:5089Google Scholar
  21. 21.
    Sato T, Masaki K, Sato K, Fujishiro Y, Okuwaki A (1996) J Chem Tech Biotechnol 67:339CrossRefGoogle Scholar
  22. 22.
    Fujishiro Y, Uchida S, Sato T (1999) J Inorg Mater 1:67CrossRefGoogle Scholar
  23. 23.
    Yanagisawa M, Sato T (2001) Int J Inorg Mater 3(2):157CrossRefGoogle Scholar
  24. 24.
    Yanagisawa M, Uchida S, Sato T (2000) Int J Inorg Mater 2(4):339CrossRefGoogle Scholar
  25. 25.
    Shangguan W, Yoshida A (2001) Solar Energy Mater Solar Cells 69(2):189CrossRefGoogle Scholar
  26. 26.
    Machida M, Ma XW, Taniguchi H, Yabunaka J, Kijima T (2000) J Molec Catalysis A Chem 155(1-2):131CrossRefGoogle Scholar
  27. 27.
    Harada M, Sasaki T, Ebina Y, Watanabe M (2002) J Photochem Photobiol A Chem 148:273CrossRefGoogle Scholar
  28. 28.
    Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M, Decher G (2001) Chem Mater 13(12):4661CrossRefGoogle Scholar
  29. 29.
    Ramírez-Salgado J, Fabry P (2003) Solid State Ionics 158:297CrossRefGoogle Scholar
  30. 30.
    Ramírez-Salgado J, Djurado E, Fabry P (2004) J Eur Ceramic Society 24:2477CrossRefGoogle Scholar
  31. 31.
    Holzinger M, Maiera J, Sitteb W (1996) Solid State Ionics 86-88:1055CrossRefGoogle Scholar
  32. 32.
    Dékány I, Szántó F, Weiss A, Lagaly G (1986) Ber Bunsenges Phys Chem 90:422Google Scholar
  33. 33.
    Lagaly G, Weiss A (1971) Kolloid-Z. U. Z. Polymere 243:48Google Scholar
  34. 34.
    Lagaly G, Weiss A (1971) Kolloid-Z U Z Polymere 248:968Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  2. 2.Department of Colloid ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations