Skip to main content
Log in

Effect of counterion on thermodynamic micellar properties of tetradecylpyridinium in aqueous solutions

  • Short Communications
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Electrical conductivity of aqueous solutions of tetradecylpyridinium bromide and chloride has been measured as a function of surfactant molal concentration and temperature. From the molal dependence of conductivity, the critical micelle concentration and the micellar ionization degree were estimated. The temperature dependence of these parameters has been used for calculating the thermodynamic parameters related with the micellization process by using the classical charged pseudophase separation model. The effect of the counterion on the conventional thermodynamic potentials of micellization such as standard Gibbs free energy, enthalpy and entropy has also been a matter of study. Finally, the occurrence of the enthalpy–entropy compensation phenomenon was verified and the relevant parameters discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patarin J, Lebeau B, Zana R (2002) Curr Opin Colloid Interface Sci 7:229

    Article  Google Scholar 

  2. Adderson JE, Taylor H (1967) J Colloid Sci 19:459

    Google Scholar 

  3. Skerjanc J, Kogej K, Cerar J (1999) Langmuir 15:5023

    Article  CAS  Google Scholar 

  4. Mehrian T, de Keizer A, Korteweg AJ, Lyklema J (1993) Colloid Surf A 71:255

    Article  CAS  Google Scholar 

  5. Causi S, De Lisi R, Milioto S (1991) J Sol Chem 20:1013

    Google Scholar 

  6. Galán JJ, González-Pérez A, Del Castillo JL, Rodríguez JR (2002) J Therm Anal Cal 70:229

    Article  Google Scholar 

  7. Fujio K, Mitsui T, Kurumizawa H, Tanaka Y, Uzu Y (2004) Colloid Polym Sci 282:223

    Article  CAS  Google Scholar 

  8. Davey TW, Warr GG, Alegren M, Asakawa T (2001) Langmuir 17:5283

    Article  CAS  Google Scholar 

  9. Inoue T, Ryoichi T, Shibuya Y, Shimozawa R (1980) J Colloid Interface Sci 73:105

    Article  CAS  Google Scholar 

  10. Monk CB (1961) Electrolytic dissociation, Academic, London

    Google Scholar 

  11. Williams RJ, Phillips JN, Mysels KJ (1955) Trans Faraday Soc 51:728

    Article  CAS  Google Scholar 

  12. Fujio K (1998) Bull Chem Soc Jpn 71:83

    CAS  Google Scholar 

  13. Stauff J (1938) Z Phys Chem A 183:55

    Google Scholar 

  14. Klevens HB (1953) J Am Chem Soc 30:74

    CAS  Google Scholar 

  15. Rodríguez JR, González-Pérez A, Del Castillo JL, Czapkiewicz J (2002) J Colloid Interface Sci 250:438

    Article  Google Scholar 

  16. González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2002) J Colloid Interface Sci 280:503

    Google Scholar 

  17. Hoffmann H, Ulbright ZNF (1977) Z Phys Chem, N F 106:167

    CAS  Google Scholar 

  18. Van Nieuwkoop J, Snoei G (1985) J Colloid Interface Sci 103:417

    Article  Google Scholar 

  19. Castedo A, Del Castillo JL, Suárez-Filloy MJ, Rodríguez JR (1997) J Colloid Interface Sci 196:148

    Article  CAS  PubMed  Google Scholar 

  20. Chen L-J, Lin S-Y, Huang C-C (1998) J Phys Chem B 102:4350

    Article  CAS  Google Scholar 

  21. La Mesa C (1990) J Phys Chem 94:323

    CAS  Google Scholar 

  22. Muller N (1993) Langmuir 9:96

    CAS  Google Scholar 

  23. Zielinski R, Ikeda S, Nomura H, Kato S (1989) J Colloid Interface Sci 129:175

    Article  CAS  Google Scholar 

  24. González-Pérez A, Czapkiewicz J, Del Castillo JL, Rodríguez JR (2001) Colloid Surf A 193:129

    Article  Google Scholar 

  25. González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2001) J Phys Chem B 105:1720

    Article  Google Scholar 

  26. Molenet J (1969) J Chem Phys 66:825

    Google Scholar 

  27. González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2002) Colloid Polym Sci 280:503

    Article  Google Scholar 

  28. Shinoda K, Hutchinson E (1962) J Phys Chem 66:577

    CAS  Google Scholar 

  29. Sugihara G, Hisatomi M (1999) J Colloid Interface Sci 219:31

    Article  CAS  PubMed  Google Scholar 

  30. Sugihara G, Nakano T-Y, Sulthana SB, Rakshit AK (2001) J Oleo Sci 50:29

    CAS  Google Scholar 

  31. Venable RL, Nauman RV (1964) J Phys Chem 68:3498

    CAS  Google Scholar 

  32. Shirahama K, Tashiro M (1984) Bull Chem Soc Jpn 57:377

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Xunta de Galicia (Project PGIDIT03PXIB20601PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galán, J.J., González-Pérez, A., Seijas, J.A. et al. Effect of counterion on thermodynamic micellar properties of tetradecylpyridinium in aqueous solutions. Colloid Polym Sci 283, 456–460 (2005). https://doi.org/10.1007/s00396-004-1206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1206-0

Keywords

Navigation