Skip to main content
Log in

Preparation of micelles with azobenzene at their coronas or cores from ‘nonamphiphilic’ diblock copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Micelles with azobenzene at the coronas or the cores were prepared by the micellization of ‘nonamphiphilic’ diblock copolymers through hydrogen bond cross-linking. We used 4-(phenylazophenoxymethyl)styrene (AS) as the azobenzene. A poly(vinylphenol)-block-poly(AS-co-styrene) diblock copolymer (PVPh-b-P(AS-co-St)) was prepared by combination of the nitroxide-mediated living radical polymerization and the hydrolysis. The copolymer contained ca. 1 mol% of the azobenzene units in the P(AS-co-St) blocks on the basis of 1H NMR analysis. The PVPh-b-P(AS-co-St) copolymer showed no micellization in 1,4-dioxane, the nonselective solvent. Dynamic light scattering demonstrated that the copolymer formed micelles in the presence of 1,4-butanediamine (BDA) in this solvent. 1H NMR analysis revealed that the azobenzene moieties were located at the coronas of the micelles, because the signals of the aromatic protons originating from the azobenzene had no changes in the shape and the intensity by the micellization. UV analysis supported the presence of the azobenzene at the micellar coronas. The size of the PVPh-b-P(AS-co-St) micelles was independent of the copolymer concentration. On the other hand, the aggregation number of the micelles was dependent not only on the copolymer concentration but also on the kind of the diamine. A poly(AS-co-vinylphenol)-block-polystyrene diblock copolymer (P(AS-co-VPh)-b-PSt) formed the micelles with the azobenzene at the cores of the micelles by BDA. UV analysis demonstrated that the azobenzene at the micellar cores still had the potential to function as photorefractive switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a,b
Fig. 4a,b
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15a,b
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Imaba Y, Daniels ES, El-Aasser MS (1994) J Coat Technol 66:63

    Google Scholar 

  2. Ha T, Song, H, Lee H, Kim J (2000) Colloids Surf A 162: 289

    Article  CAS  Google Scholar 

  3. Lum KK, Campbell BC, Gray ML (2000) Ger Offen DE 10017359 A1 2 Nov, p 10

  4. Bohnel B, Schlosser DL (1991) Eur Pat Appl EP 439941 A1 7 Aug, p 11

  5. Di S, Frank V (1993) Eur Pat Appl EP 534393 A1 31 Mar, p 9

  6. Simpson LA, Robb J, Banford J, Dietz PF, Temperley J (1993) Eur Pat Appl EP 573150 A2 8 Dec, p 14

  7. Yabuta M, Tominaga A, Murata K (1993) Polym Mater Sci Eng 70:168

    CAS  Google Scholar 

  8. Schlossman DS (1994) US 5314683 A 24 May, p 12

  9. Bara I, Mellul M (1996) Can Pat Appl CA 2153545 AA 12 Jan, p 18

  10. Pope EJA (1994) J Sol-Gel Sci Technol 2:717

    Google Scholar 

  11. Tuncay M, Calis S, Kas HS, Ercan MT, Peksoy I, Hincal AA (2000) J Microencapsulation 17:145

    Article  CAS  PubMed  Google Scholar 

  12. Ijichi K, Uemura Y, Yoshizawa H, Hatate Y, Haraguchi T, Ide S, Hatanaka C, Yamada K, Kawano Y (1997) Kagaku Kogaku Ronbunshu 23:578

    CAS  Google Scholar 

  13. Delair T, Pichot C, Mandrand B (1994) Colloid Polym Sci 272:72

    CAS  Google Scholar 

  14. Charleux B, Fanget P, Pichot C (1992) Makromol Chem 193:205

    Article  CAS  Google Scholar 

  15. Sugiyama K, Ohga K, Kikukawa K (1994) Macromol Chem Phys 195:1341

    Article  CAS  Google Scholar 

  16. Zerfa M, Brooks BW (1997) J Appl Polym Sci 65:127

    Article  CAS  Google Scholar 

  17. Wang G, Li M, Chen X (1997) J Appl Polym Sci 65:789

    Article  CAS  Google Scholar 

  18. Chen Y, Yang H (1992) J Polym Sci Part A Polym Chem 30:2765

    Article  CAS  Google Scholar 

  19. Horak D, Svec F, Frechet JMJ (1995) J Polym Sci Part A Polym Chem 33:2961

    Article  CAS  Google Scholar 

  20. Bamnolker H, Margel S (1996) J Polym Sci Part A Polym Chem 34:1857

    Article  CAS  Google Scholar 

  21. Taylor MB, Gilbert RD, Stannett VT (1994) J Appl Polym Sci 53:1385

    Article  CAS  Google Scholar 

  22. Sun Fuming, Ruckenstein E (1993) J Appl Polym Sci 48:1279

    Article  CAS  Google Scholar 

  23. Chern C, Chen Y (1996) Polym J 28:627

    CAS  Google Scholar 

  24. Wang, ST, Schork FJ, Poehlein GW, Gooch JW (1996) J Appl Polym Sci 60:2069

    Article  CAS  Google Scholar 

  25. Krause S (1964) J Phys Chem 68:1948

    CAS  Google Scholar 

  26. Cogan KA, Gast AP (1990) Macromolecules 23:745

    CAS  Google Scholar 

  27. Zhu J, Eisenberg A, Lennox RB (1992) Macromolecules 25:6547

    CAS  Google Scholar 

  28. Antonietti M, Heinz S, Schmidt M, Rosenauer C (1994) Macromolecules 27:3276

    CAS  Google Scholar 

  29. Yoshida E, Wells SL, DeSimone JM (2001) Kobunshironbunshu 58:507

    CAS  Google Scholar 

  30. Ismael M, Tondre C (1992) Langmuir 8:1039

    CAS  Google Scholar 

  31. Chang Q, Chen (1995) J Chem Eng J 59:303

    Article  CAS  Google Scholar 

  32. Yoon KA, Burgess DJ (1997) J Pharm Pharmacol 49:478

    CAS  PubMed  Google Scholar 

  33. Lawrence MJ, Lawrence SM, Barlow DJ (1997) J Pharm Pharmacol 49:594

    CAS  PubMed  Google Scholar 

  34. Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S, Niidome T (2003) J Am Chem Soc 125:3455

    Article  CAS  PubMed  Google Scholar 

  35. Monaham SD, Wolff JA, Slattum PM, Hagstrom JE, Budker VG (2003) US Pat Appl Publ US 2003027339 A1 6 FEB, p 21

  36. Kwetkat K, Koch H, Ruback W (1997) Ger Offen DE 19524127 A1 9 Jan, p 4

  37. Suzuki Y, Horie M, Okamoto Y, Kurose Y, Maeda S (1998) Jpn J Appl Phys 37: 2084

    Article  CAS  Google Scholar 

  38. Suzuki Y, Okamoto Y, Kurose Y, Maeda S (1999) Jpn J Appl Phys 38:1669

    Article  CAS  Google Scholar 

  39. Kang H, Lee B, Yoon J, Yoon M (2000) J Colloid Interface Sci 231:255

    Article  CAS  PubMed  Google Scholar 

  40. Orihara Y, Matsumura A, Saito Y, Ogawa N, Saji T, Yamaguchi A, Sakai H, Abe M (2001) Langmuir 17:6072

    Article  CAS  Google Scholar 

  41. Buwalda RT, Stuart MCA, Engberts JBFN (2002) Langmuir 18:6507

    Article  CAS  Google Scholar 

  42. Nieuwkerk AC, Van K, Ellen JM, Koudijs A, Marcelis ATM, Sudhoelter EJR (1999) Eur J Org Chem 305

  43. Yoshida E, Kunugi S (2002) Macromolecules 35:6665

    Article  CAS  Google Scholar 

  44. Yoshida E (2003) Polym J 35:484

    Article  CAS  Google Scholar 

  45. Yoshida E (2003) Polym J 35:965

    Article  CAS  Google Scholar 

  46. Miyazawa T, Endo T, Shiihashi S, Okawara M (1985) J Org Chem 50:1332

    CAS  Google Scholar 

  47. Yoshida E, Kunugi S (2002) J Polym Sci Part A Polym Chem 40:3063

    Article  CAS  Google Scholar 

  48. Morrison D, Grabowski EF, Herb CA (1985) Langmuir 1:496

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, E., Ohta, M. Preparation of micelles with azobenzene at their coronas or cores from ‘nonamphiphilic’ diblock copolymers. Colloid Polym Sci 283, 521–531 (2005). https://doi.org/10.1007/s00396-004-1179-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1179-z

Keywords

Navigation