Skip to main content
Log in

Colloidal crystals of core–shell-type spheres in deionized aqueous suspension

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The structure, crystal growth kinetics and rigidity of colloidal crystals of core–shell-type latex spheres (diameters 280–330 nm) with differences in shell rigidity have been studied in aqueous suspension, mainly by reflection spectroscopy. The suspensions were deionized exhaustively for more than 2 years using mixed-bed ion-exchange resins. The five kinds of core–shell spheres examined form colloidal crystals, where the critical sphere concentrations, ϕ c, of crystallization (or melting) are high and range from 0.01 to 0.06 in volume fraction. Nearest-neighbor intersphere distances in the crystal lattice agree satisfactorily with values calculated from the sphere diameter and concentration. The crystal growth rates are between 0.1 and 0.3 s−1 and decrease slightly as the sphere concentration increases, indicating that the crystal growth rates are from the secondary process in the colloidal crystallization mechanism, corresponding to reorientation from metastable crystals formed in the primary process and/or Ostwald-ripening process. The rigidities of the crystals range from 2 to 200 Pa, and increase sharply as the sphere concentration increases. The g factor, the parameter for crystal stability, is around 0.02 irrespective of the sphere concentration and/or the kind of core–shell sphere. There are no distinct differences in the structural, kinetic and elastic properties among the colloidal crystals of the different core–shell-type spheres, showing that the internal sphere structure does not affect the properties of the colloidal crystals. The results show that colloidal crystals form in a closed container owing to long-range repulsive forces and the Brownian movement of colloidal spheres surrounded by extended electrical double layers and that their formation is not influenced by the rigidity and internal structure of the spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JTG (1970) In: Goldfinger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York

  2. Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881

    CAS  Google Scholar 

  3. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interface Sci 44:330

    CAS  Google Scholar 

  4. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Biophys Chem 11:411

    CAS  Google Scholar 

  5. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    CAS  Google Scholar 

  6. Pieranski P (1983) Contemp Phys 24:25

    CAS  Google Scholar 

  7. Ottewill RH (1985) Ber Bunsenges Phys Chem 89:517

    CAS  Google Scholar 

  8. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Phys Rev Lett 57:1733

    Article  CAS  PubMed  Google Scholar 

  9. Pusey PN, van Megen W (1986) Nature 320:340

    CAS  Google Scholar 

  10. Okubo T (1988) Acc Chem Res 21:281

    CAS  Google Scholar 

  11. Okubo T (1997) Curr Top Colloid Interface Sci 1:169

    CAS  Google Scholar 

  12. Okubo T (1992) Naturwissenschaften 79:317

    CAS  Google Scholar 

  13. Okubo T (1993) Colloid Polym Sci 271:190

    CAS  Google Scholar 

  14. Okubo T (1994) Langmuir 10:1695

    CAS  Google Scholar 

  15. Okubo T (1987) Ber Bunsenges Phys Chem 91:516

    CAS  Google Scholar 

  16. Okubo T (1994) In: Schmitz KS (ed) Macro-ion characterization for dilute solutions to complex fluids. American Chemical Society, Washington, DC

  17. Okubo T, Yoshimi H, Shimizu T, Ottewill RH (2000) Colloid Polym Sci 278:474

    Google Scholar 

  18. Okubo T, Fujita H, Kiriyama K, Yamaoka H (1996) Colloid Polym Sci 274:73

    CAS  Google Scholar 

  19. Okubo T (1994) Langmuir 10:3529

    CAS  Google Scholar 

  20. Yoshinaga K, Chiyoda M, Ishiki H, Okubo T (2002) Colloids Surf 204:285

    Article  CAS  Google Scholar 

  21. Okubo T, Ishiki H, Kimura H, Chiyoda M, Yoshinaga K (2002) Colloid Polym Sci 280:290

    Article  CAS  Google Scholar 

  22. Okubo T, Ishiki H, Kimura H, Chiyoda M, Yoshinaga K (2002) Colloid Polym Sci 280:446

    Article  CAS  Google Scholar 

  23. Okubo T (1987) Angew Chem Int Ed Engl 26:765

    Article  Google Scholar 

  24. Okubo T, Aotani S (1988) Colloid Polym Sci 266:1049

    CAS  Google Scholar 

  25. Okubo T, Aotani S (1988) Naturwissenschaften 75:145

    CAS  Google Scholar 

  26. Okubo T, Hase H, Kimura H, Kokufuta E (2002) Langmuir 18:6783.

    Article  CAS  Google Scholar 

  27. Okubo T (2003) Sen’i Gakkaishi 59:43 (in Japanese)

  28. Okubo T (1993) Prog Polym Sci 18:481

    Article  CAS  Google Scholar 

  29. Stoimenova M, Okubo T (1999) In: Schwarz JA, Contescu CI (eds) Surfaces of nanoparticles and porous materials. Dekker, New York, p 103

  30. Okubo T (2002) In: Hubbard A (ed) Encyclopedia of surface and colloid science. Dekker, New York, p 1300

  31. Lovell PA, El-Aasser MS (eds) (1997) Emulsion polymerization and emulsion polymers. Wiley, Chichester

  32. Garrett J, Lovell PA, Shea AJ, Viney RD (2000) Macromol Symp 151:487

    CAS  Google Scholar 

  33. Lovell PA, McDonald J, Saunders DEJ, Young RJ (1993) Polymer 34:61

    Article  CAS  Google Scholar 

  34. Okubo T, Kiriyama K, Nemoto N, Hashimoto H (1996) Colloid Polym Sci 274:93

    CAS  Google Scholar 

  35. Dhont JKG, Smits C, Lekkerkerker HNW (1992) J Colloid Interface Sci 152:386

    CAS  Google Scholar 

  36. Okubo T, Ishiki H (2000) J Colloid Interface Sci 228:151

    Article  CAS  PubMed  Google Scholar 

  37. Crandall RS, Williams R (1997) Science 198:293

    Google Scholar 

  38. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Biophys Chem 11:411

    CAS  Google Scholar 

  39. Okubo T (1989) J Chem Soc Faraday Trans 1 85:455

    CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of Education, Science, Sports and Culture, Japan is thanked for grants-in-aid for Scientific Research on Priority Area (A) (11167241) and for Scientific Research (B) (11450367). Financial support from the UK Engineering and Physical Sciences Research Council and Rhodia Specialties (for N.E.) and from the Thai Government and Ineos Acrylics (for S.T.) is gratefully acknowledged. T.O. appreciates deeply the late Prof. Emeritus Sei Hachisu for his continual encouragement and comments on our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Kimura, H., Hase, H. et al. Colloidal crystals of core–shell-type spheres in deionized aqueous suspension. Colloid Polym Sci 283, 393–401 (2005). https://doi.org/10.1007/s00396-004-1158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1158-4

Keywords

Navigation