Skip to main content
Log in

Reversible pH-induced transformation of micellar aggregates between hemicylinders and laterally homogeneous layers at graphite-solution interfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

pH-induced transformation between a hemicylindrical aggregate and a laterally homogeneous layer at the graphite-solution interface was demonstrated in micellar aggregates of dodecyldimethylamine oxide (C12DMAO) using atomic force microscopy (AFM). Nonionic C12DMAO (pH~8) and fully-ionized cationic C12DMAO (pH~1.5) both formed hemicylindrical aggregates on graphite, similar to aggregates formed by many other ionic (or nonionic) surfactants on graphite. However, a laterally homogeneous layer was observed in the case of nearly half-ionized C12DMAO around pH~4 (a 1:1 mixture of the nonionic and the cationic species). These results indicated that the surface curvature of the C12DMAO aggregates on graphite was the smallest around the degree of ionization α=0.5, despite charging up the nonionic hemicylindrical aggregates. Using AFM images and the corresponding force curves, the transformation between the hemicylindrical aggregate and the laterally homogeneous layer was found to be reversible via a change in pH. The formation of the laterally homogeneous layer of nearly half-ionized C12DMAO is explained by hydrogen bond formation between the nonionic and the cationic headgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2a–h
Fig. 3
Fig. 4
Fig. 5a–d

Similar content being viewed by others

References

  1. Gaudin AM, Fuerstenau DW (1955) T AIME 1

  2. Gaudin AM, Fuerstenau DW (1955) T AIME 958

  3. Manne S, Cleveland JP, Gaub HE, Stucky GD, Hansma PK (1994) Langmuir 10:4409

    CAS  Google Scholar 

  4. Manne S, Gaub HE (1995) Science 270:1480

    CAS  Google Scholar 

  5. Wanless EJ, Ducker WA (1996) J Phys Chem B 100:3207

    Article  CAS  Google Scholar 

  6. Warr GG (2000) Curr Opin Colloid In 5:95

    Article  Google Scholar 

  7. Tiberg F, Brinck J, Grant L (2000) Curr Opin Colloid In 4:411

    Article  Google Scholar 

  8. Liu J-F, Ducker WA (1999) J Phys Chem B 103:8558

    Article  CAS  Google Scholar 

  9. Wanless EJ, Ducker WA (1997) Langmuir 13:1463

    Article  CAS  Google Scholar 

  10. FitzGerald PA, Warr GG (2001) Adv Mater 13:967

    Article  CAS  Google Scholar 

  11. Lamont R, Ducker WA (1997) J Colloid Interf Sci 191:303

    Article  CAS  Google Scholar 

  12. Grant LM, Tiberg F, Ducker WA (1998) J Phys Chem B 102:4288

    Article  CAS  Google Scholar 

  13. Kiraly Z, Findenegg GH (1998) J Phys Chem B 102:1203

    Article  CAS  Google Scholar 

  14. Grant LM, Edeth T, Tiberg F (2000) Langmuir 16:2285

    Article  CAS  Google Scholar 

  15. Wolgemuth JL, Workman RK, Manne S (2000) Langmuir 16:3077

    Article  CAS  Google Scholar 

  16. Bandyopadhyay S, Schelly JC, Tarek M, Moore PB, Klein ML (1998) J Phys Chem B 102:6318

    Article  CAS  Google Scholar 

  17. Jonson RA, Nagarajan R (2000) Colloid Surface A 167:21

    Google Scholar 

  18. Herrmann KW (1962) J Phys Chem 66:295

    CAS  Google Scholar 

  19. Tokiwa F, Ohki K (1966) J Phys Chem 70:3437

    CAS  Google Scholar 

  20. Maeda H, Tsunoda M, Ikeda S (1974) J Phys Chem 78:1086

    CAS  Google Scholar 

  21. Ikeda S, Tsunoda M, Maeda H (1979) J Colloid Interf Sci 70:448

    CAS  Google Scholar 

  22. Warr GG, Grieser F, Evans DF (1986) J Chem Soc Farad T 1 82:1829

    Article  CAS  Google Scholar 

  23. Rathman JF, Christian SD (1990) Langmuir 6:391

    CAS  Google Scholar 

  24. Maeda H (1996) Colloid Surface A 109:263

    Article  CAS  Google Scholar 

  25. Maeda H, Kakehashi, R (2000) Adv Colloid Interfac 88:275

    Article  CAS  PubMed  Google Scholar 

  26. Kawasaki H, Fukuda T, Yamamoto A, Fukada K, Maeda H (2000) Colloid Surface A 169:117

    Article  CAS  Google Scholar 

  27. Miyahara M, Kawasaki H, Fukuda T, Ozaki Y, Maeda H. (2001) Colloid Surface A 183–185:475

  28. Kawasaki H, Maeda H (2001) Langmuir 17:2279

    Google Scholar 

  29. Kawasaki H, Ookuma K, Maeda H (2002) J Colloid Interf Sci 252:419

    Article  CAS  Google Scholar 

  30. Kawasaki H, Souda M, Tanaka S, Nemoto N, Karlsson G, Almgren M, Maeda H (2002) J Phys Chem B 106:1524

    Article  CAS  Google Scholar 

  31. Kawasaki H, Shutou M, Maeda H (2001) Langmuir 17:8210

    Article  CAS  Google Scholar 

  32. Davey TW, Warr GG, Almgren M, Asakawa T (2001) Langmuir 17:5283

    Article  CAS  Google Scholar 

  33. Maeda H, Kanakubo Y, Miyahara M, Kakehashi R, Garamus V, Pedersen JS (2000) J Phys Chem B 104:6174

    Article  CAS  Google Scholar 

  34. Miyahara M, Kawasaki H, Garamus VM, Nemoto N, Kakehashi R, Tanaka S, Annaka M, Maeda H (2004) Colloid Surface B (submitted)

  35. Ducker WA, Wanless EJ (1996) Langmuir 12:5915

    Article  CAS  Google Scholar 

  36. Patrick HN, Warr GG, Manne S, Aksay IA (1999) Langmuir 15:1685

    Article  CAS  Google Scholar 

  37. Xu SL, Wang C, Zeng, QD, Wu P, Wang ZG, Yan HK, Bai CL (2002) Langmuir 18:657

    Article  CAS  Google Scholar 

  38. Israelachvili JN, Mitchel DJ, Ninham BW (1976) J Chem Soc Farad T 2 72:1525

    Article  Google Scholar 

  39. Goddard ED, Kung HC (1973) J Colloid Interf Sci 43:511

    CAS  Google Scholar 

  40. Rathman JF, Scheuing DR (1990) ACS Sym Ser 447 7:123

    Google Scholar 

  41. Grant LM, Ducker WA (1997) J Phys Chem B 101:5337

    Article  CAS  Google Scholar 

  42. Wanless EJ, Davey TW, Ducker WA (1997) Langmuir 13:4223

    Article  CAS  Google Scholar 

  43. Holland NB, Ruegsegger M, Marchant RE (1998) Langmuir 14:2790

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported, in part, by the Grant-in Aid for Scientific Research (No. 15750121) from The Monbukagaku-shou Japan, and in part by the Mitsubishi Chemical Corporation Fund. This study was partially supported by Industrial Technology Research Grant Program ‘03 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideya Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, H., Shinoda, M., Miyahara, M. et al. Reversible pH-induced transformation of micellar aggregates between hemicylinders and laterally homogeneous layers at graphite-solution interfaces. Colloid Polym Sci 283, 359–366 (2005). https://doi.org/10.1007/s00396-004-1146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1146-8

Keywords

Navigation