Skip to main content
Log in

Seed polymerization of tetraethyl ortho-silicate in the presence of rod-like colloidal particles of anionic palygorskite and cationic β-FeO(OH)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Kinetic analyses were made of the seed polymerization of tetraethyl ortho-silicate (TEOS) in the presence of rod-like colloidal particles of palygorskite and cationic β-FeO(OH) by turbidity and dynamic light-scattering measurements. Transmission electron microscopic measurements supported the formation of core-shell particles. The seed polymerization of TEOS took place exclusively on the surfaces of palygorskite. The main cause of the observation is due to the fact that the main component of palygorskite is SiO2 and the affinity between palygorskite and TEOS is high, though the electrostatic repulsion between them is not favorable for shell formation. The shell formation of silica on a β-FeO(OH) particle also proceeded. The electrostatic attraction forces between the anionic polar TEOS monomers and cationic β-FeO(OH) particles played an important role in shell formation. These results are consistent with a polymerization mechanism consisting of the formation of small preliminary particles followed by their coalescence on the surfaces of the seeds to give the final large particles coated with silica layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a,b
Fig. 5
Fig. 6
Fig. 7a,b
Fig. 8a,b

Similar content being viewed by others

References

  1. Okubo T, Miyamoto T, Umemura K, Kobayashi K (2001) Colloid Polym Sci 279:1236

    Article  CAS  Google Scholar 

  2. Okubo T, Miyamoto T, Umemura K, Noguchi T, Kobayashi K, Tsuchida A (2003) Colloid Polym Sci 281:1055

    Article  CAS  Google Scholar 

  3. Iler RK (1979) The chemistry of silica. Wiley, New York

  4. Klein LC (ed) (1988) Sol–gel technology for thin films, fibers, preforms, electronics, and specialty shapes. Noyes, Park Ridge

  5. Bergna HE (1994) The colloid chemistry of silica. Am Chem Soc, Washington

  6. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62

    Google Scholar 

  7. van Helden AK, Vrij A (1980) J Colloid Interface Sci 78:312

    Google Scholar 

  8. Kops-Werkhoven MM, Fijnant HM (1980) In: Degiorgio V, Corti M, Giglio M (eds) Light-scattering in liquids and macromolecular solutions. Plenum, New York, p 81

  9. Shimohira T, Ishijima H (1981) Jpn J Chem Soc 9:1503

    Google Scholar 

  10. Okubo T (1988) J Chem Phys 88:6581

    Google Scholar 

  11. Matsoukas T, Gulari E (1988) J Colloid Interface Sci 124:252

    CAS  Google Scholar 

  12. Matsoukas T, Gulari E (1989) J Colloid Interface Sci 132:13

    CAS  Google Scholar 

  13. Bogush GH, Zukoski IV CF (1991) J Colloid Interface Sci 142:1

    CAS  Google Scholar 

  14. Bogush GH, Zukoski CF IV (1991) J Colloid Interface Sci 142:19

    CAS  Google Scholar 

  15. van Blaaderen A, van Geest J, Vrij A (1992) J Colloid Interface Sci 154:481

    Google Scholar 

  16. van Blaaderen A, Kentgens APM (1992) J Non-Cryst Solids 149:161

    Google Scholar 

  17. Okubo T (1992) Ber Bunsenges Phys Chem 96:61

    CAS  Google Scholar 

  18. Giesche H (1994) J Eur Ceram Soc 14:189

    CAS  Google Scholar 

  19. Lee K, Look JL, Harris MT, Mc Cormick AV (1997) J Colloid Interface Sci 194:78

    Article  CAS  PubMed  Google Scholar 

  20. Boukari H, Lin JS, Harris MT (1997) J Colloid Interface Sci 194:311

    Article  CAS  PubMed  Google Scholar 

  21. Shimohira T, Komuro N (1976) Powder Powder Metall 23:137

    CAS  Google Scholar 

  22. Shewnon PG (1964) Trans Met Soc AIME 230:1134

    Google Scholar 

  23. Nichols FA (1966) J Appl Phys 37:4599

    Google Scholar 

  24. Heg AW, Livey DT (1966) Trans Brit Ceram Soc 65:626

    Google Scholar 

  25. Kotera Y, Saito T, Terada M (1963) Bull Chem Soc Jpn 36:2195

    Google Scholar 

  26. Aihara K, Chaklader ACD (1975) Acta Metall 23:855

    Article  CAS  Google Scholar 

  27. Ogihara T (2000) In: Sugimoto T (ed) Fine particles. Synthesis, characterization, and mechanisms of growth. Marcel Dekker, New York, p 35

  28. Okubo T, Kobayashi K, Kuno A, Tsuchida A (1999) Colloid Polym Sci 277:483

    Article  CAS  Google Scholar 

  29. Okubo T, Tsuchida A, Kobayashi K, Kuno A, Morita T, Fujishima M, Kohno Y (1999) Colloid Polym Sci 277:474

    Article  CAS  Google Scholar 

  30. Watson JHL, Cardel RR Jr, Heller W (1962) J Phys Chem 66:1757

    CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate deeply Professor Dr. Maria Stoimenova for her kind provision of the palygorskite particles. The Ministry of Education, Science, Sports and Culture is thanked for Grants-in-Aid for Scientific Research on Priority Area (A) (11167241) and for Scientific Research (B) (11450367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Miyamoto, T., Otake, A. et al. Seed polymerization of tetraethyl ortho-silicate in the presence of rod-like colloidal particles of anionic palygorskite and cationic β-FeO(OH). Colloid Polym Sci 282, 1341–1346 (2004). https://doi.org/10.1007/s00396-004-1051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1051-1

Keywords

Navigation