Colloid and Polymer Science

, Volume 282, Issue 9, pp 1000–1007 | Cite as

Non-equilibrium adsorption at solid/liquid interfaces from polyelectrolyte solutions

  • Andrej Voronov
  • Sergej Minko
  • Alexander Shulga
  • Emile Pefferkorn
Original Contribution


The poly(2-vinylpyridine) layer was established at the Pyrex glass/water interface with periodic phases of adsorption/desorption runs observed over several days. This was evidenced by determining the concentration of radio-labelled molecules in the solution equilibrating the glass beads as a function of time (the effluent) while the same radio-labelled polymer was slowly supplied by injecting the polymer solution into the reactor containing the adsorbent at a controlled extremely slow rate. Although the adsorption (or the desorption) steps seemed to present some periodic character, they were better correlated with the successive bulk concentration thresholds that were established with time when the initial surface was free of polymer at time zero. Even when the adsorbent was coated at different degrees, desorption steps were correlated to the overstepping of decreasing concentration thresholds. Adsorption and desorption runs were attributed to the existence of different typical interfacial conformations of the adsorbed macromolecules that only can be stabilised in the adsorbed state when the layer was “equilibrated” with the polymer solution of a certain concentration. Macromolecule were definitely adsorbed when the reconformation process led to a flat conformation (trains). Macromolecules adsorbed with a conformation close to their solution conformation may be desorbed as a result of the reconformation process affecting previously adsorbed neighbour molecules (in the case of partially coated surfaces at time zero of injection). Macromolecules with loops and tails were retained on the surface when the polymer concentration in the bulk was progressively increased (for uncoated surfaces at time zero of injection). All these effect were attributed to the combined influence of topological effects on adsorption and reconformation of adsorbed macromolecules that characterise the non-equilibrium adsorption processes.


Polyelectrolyte adsorption Polyelectrolyte desorption Polyelectrolyte reconformation Non-equilibrium adsorption Overshoot 



The financial support was provided by the Centre National de la Recherche Scientifique (CNRS). A.S., S.M. and A.V. thank the NATO Collaborative Linkage Grant–976188 for financing travel and subsistence.


  1. 1.
    Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic Press, New YorkGoogle Scholar
  2. 2.
    Gregory J (1982). In: Tadros Th (ed) The effect of polymers on dispersion properties. Academic Press, New YorkGoogle Scholar
  3. 3.
    Vincent B (1982) Adv Colloid Interface Sci 4:193CrossRefGoogle Scholar
  4. 4.
    van de Ven TGM (1994) Adv Colloid Interface Sci 48:121CrossRefGoogle Scholar
  5. 5.
    Pefferkorn E (1995) Adv Colloid Interface Sci 56:33CrossRefGoogle Scholar
  6. 6.
    Swerin A, Ödberg L (1993) Nord Pulp Pap Res J 8:141Google Scholar
  7. 7.
    Vanerek A, Alince B, van de Ven TGM (2000)J Pulp Paper Sci 26:135Google Scholar
  8. 8.
    Wågberg L (2000) Nord Pulp Pap Res J 15:586Google Scholar
  9. 9.
    Chaney K, Swift RS (1984) J Soil Sci 35:223Google Scholar
  10. 10.
    Wilkinson KJ, Nègre J-C, Buffle J (1997) J Contam Hydr 26:229Google Scholar
  11. 11.
    Le Bissonais Y, Arrouays D (1997) Europ J Soil Sci 48:39Google Scholar
  12. 12.
    Pefferkorn E (1997) Adv Colloid Interface Sci 73:127Google Scholar
  13. 13.
    Elaissari A, Cros P, Pichot C, Laurent V, Mandrand B (1994) Colloids Surf 83:25CrossRefGoogle Scholar
  14. 14.
    Cohen Stuart MA, Hoogendam CW, de Keiser A (1997) J Phys: Condens Matter 9:7767Google Scholar
  15. 15.
    Chodanowski P, Stoll S (2001) Macromolecules 34:2320Google Scholar
  16. 16.
    Chodanowski P, Stoll S (2001) J Chem Phys 115:4951Google Scholar
  17. 17.
    Chodanowski P, Stoll S (2001) Macromolecules 35:9556Google Scholar
  18. 18.
    Pincus PA, Sandroff CJ, Witten TA (1984) J Phys (Paris) 45:725Google Scholar
  19. 19.
    Muthukumar M (1987) J Chem Phys 86:7230CrossRefGoogle Scholar
  20. 20.
    Aubouy M, Guiselin O, Raphael E (1996) Macromolecules 29:7261CrossRefGoogle Scholar
  21. 21.
    Semenov AN, Joanny JF (1995) J Phys II France 5:859CrossRefGoogle Scholar
  22. 22.
    van Eijk MCP, Cohen Stuart MA, Rovillard S, De Coninck J (1998) Eur Phys B 1:233CrossRefGoogle Scholar
  23. 23.
    Pefferkorn E, Jean-Chronberg A-C, Varoqui R (1989) CR Acad Sci Paris t 308 Série II:1203Google Scholar
  24. 24.
    Pefferkorn E, Jean-Chronberg A-C, Varoqui R (1990) Macromolecules 23:1735Google Scholar
  25. 25.
    Pefferkorn E, Elaissari A (1990) J Colloid Interface Sci 138 :187Google Scholar
  26. 26.
    Elaissari A, Pefferkorn E (1990) J Colloid Interface Sci 141:522Google Scholar
  27. 27.
    Elaissari A, Pefferkorn E (1991) J Colloid Interface Sci 143:85Google Scholar
  28. 28.
    Cohen Stuart MA (1991) Polym J 23:669Google Scholar
  29. 29.
    Frantz P, Granick S (1991) Phys Rev Lett 66:899CrossRefPubMedGoogle Scholar
  30. 30.
    Johnson HE, Clarson SJ, Granick S (1993) Polymer 34:1960CrossRefGoogle Scholar
  31. 31.
    Schneider HM, Frantz P, Granick S (1996) Langmuir 12:994CrossRefGoogle Scholar
  32. 32.
    Minko S, Voronov A, Pefferkorn E (2000) Langmuir 16:7876CrossRefGoogle Scholar
  33. 33.
    Widmaier J, Shulga A, Pefferkorn E, Champ S, Auweter H (2003) J Colloid Interface Sci 264:277CrossRefPubMedGoogle Scholar
  34. 34.
    Shulga A, Widmaier J, Pefferkorn E, Champ S, Auweter H (2003) J Colloid Interface Sci 258:219CrossRefPubMedGoogle Scholar
  35. 35.
    Shulga A, Widmaier J, Pefferkorn E, Champ S, Auweter H (2003) J Colloid Interface Sci 258:228CrossRefPubMedGoogle Scholar
  36. 36.
    Voronov A, Pefferkorn E, Minko S (1999) Macromol Rapid Com 20:85CrossRefGoogle Scholar
  37. 37.
    Voronov A, Pefferkorn E, Minko S (1998) Macromolecules 31:6387CrossRefGoogle Scholar
  38. 38.
    Elaissari A, Haouam A, Huguenard C, Pefferkorn E (1992) J Colloid Interface Sci 149:68Google Scholar
  39. 39.
    Douglas JF, Schneider HM, Frantz P, Lipman R, Granick S (1997) J Phys: Condens Matter 9:7699Google Scholar
  40. 40.
    Varoqui R, Tran QK, Pefferkorn E (1979) Macromolecules 12:831Google Scholar
  41. 41.
    Pefferkorn E, Tran QK, Varoqui R (1981) J Polym Sci; Polym Chem Ed 19:27Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Andrej Voronov
    • 1
    • 2
  • Sergej Minko
    • 1
    • 3
  • Alexander Shulga
    • 1
    • 4
  • Emile Pefferkorn
    • 1
  1. 1.Institut Charles Sadron (CNRS)Strasbourg CedexFrance
  2. 2.Lehrstuhl für Feststoff- und Granzflächenverfahrenstechnik Friedrich-Alexander-Universität Erlangen Nürnberg ErlangenGermany
  3. 3.Chemistry Department, Division of Chemistry and PhysicsClarkson UniversityPotsdamUSA
  4. 4.Department of Aquatic Microbiology, Institute of Interfacial Biotechnology Gerhard-Mercator UniversityDuisburgGermany

Personalised recommendations