Skip to main content
Log in

Molecular composites by incorporation of a rod-like polymer into a functionalized high-performance polymer, and their conversion into microcellular foams

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Molecular composites were prepared from sulfonated modifications of polysulfone and polyphenylsulfone by incorporating relatively stiff polybenzimidazole (PBI) chains into them. The composites were characterized by Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The FT-IR results demonstrated strong specific interactions between the sulfonated polymers and the PBI, which was presumed to be the reason for the enhanced miscibility observed. Miscibility was also indicated in the DSC and TMA results, by the presence of a single glass transition temperature (which was composition dependent), although there did appear to be a small degree of phase separation. TGA results showed improvements in the thermal stability of the polymer matrix because of the incorporation of PBI. Results from SEM were also consistent with considerable miscibility. Microcellular foams processed from these molecular composites had partial open-cell cell structures, with average cell sizes ranging from 0.2 to 5 μm, in unusual bimodal cell-size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–e.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Hardy EF, Saunders JH (1972) In: Frisch KC, Saunders JH (eds) Plastics foams, vol 2. Marcel Dekker, New York, p 735

  2. Sun H, Mark JE (2002) J Appl Polym Sci 86:1692

    Article  CAS  Google Scholar 

  3. Sun H, Sur GS, Mark JE (2002) Eur Polym J 38:2373

    Article  CAS  Google Scholar 

  4. Tan SC, Bai Z, Sun H, Mark JE, Arnold FE, Lee CYC (2003) J Mater Sci (in press)

  5. Martini JE, Waldman FA, Suh NP (1984) US Patent 4,473,665

  6. Martini JE, Waldman FA, Suh NP (1982) SPE Tech Paper 1:674

    Google Scholar 

  7. Kumar V, Suh NP (1990) Polym Eng Sci 30:1323

    CAS  Google Scholar 

  8. Buckley A, Stuetz DE, Seard GA (1985) In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Encyclopedia of polymer science and engineering, vol 11. Wiley, New York, p 572

  9. Schartel B, Wendorff JH (1999) Polym Eng Sci 39:128

    CAS  Google Scholar 

  10. Arnold Jr FE, Arnold FE (1994) Adv Polym Sci 117:258

    Google Scholar 

  11. Pawlikowski GT, Dutte D, Weiss RA (1991) Ann Rev Mater Sci 21:159

    Article  CAS  Google Scholar 

  12. Helminiak TE, Benner CL, Husman GE, Arnold FE (1980) US Patent 4,207,407

  13. Baldwin DF, Tate D, Park CB, Cha SW, Suh NP (1994) J Jpn Soc Polym Proc (Seikei-kakou) 6:187

    Google Scholar 

  14. Baldwin DF, Tate D, Park CB, Cha SW, Suh NP (1994) J Jpn Soc Polym Proc (Seikei-kakou) 6:246

    Google Scholar 

  15. Park CB, Suh NP (1996) Polym Eng Sci 36:34

    CAS  Google Scholar 

  16. Nam PH, Maiti P, Okamoto M, Kotaka T, Nakayama T, Takada M, Ohshima M (2002) Polym Eng Sci 42:1907

    CAS  Google Scholar 

  17. Okamoto M, Nam PH, Maiti P, Kotaka T, Nakayama T, Takada M, Ohshima M, Usuki A, Hasegawa N, Okamoto H (2001) Nano Lett 1:503

    Article  CAS  Google Scholar 

  18. Matuana LM, Park CB, Balatinecz JJ (1997) Polym Eng Sci 37:1137

    CAS  Google Scholar 

  19. Matuana LM, Park CB, Balatinecz JJ (1998) Polym Eng Sci 38:1862

    CAS  Google Scholar 

  20. Krause B, Diekmann K, van der Vegt NFA, Wessling M (2002) Macromolecules 35:1738

    Article  CAS  Google Scholar 

  21. Johnson BC, Yilgor I, Tran C, Iqbal M, Wightman JP, Lloyd DR, McGrath JE (1984) J Polym Sci Polym Chem Ed 22:721

    Article  CAS  Google Scholar 

  22. Noshay A, Robeson LM (1976) J Appl Polym Sci 20:1885

    Article  CAS  Google Scholar 

  23. Sun H (2003) PhD thesis, University of Cincinnati

  24. Byun IS, Kim CI, Seo JW (2000) J Appl Polym Sci 76:787

    CAS  Google Scholar 

  25. Yang MH (1995) Polym Testing 14:415

    Article  CAS  Google Scholar 

  26. Vanzyl AJ, Kerres JA, Cui W, Junginger M (1997) J Membr Sci 137:173

    Article  CAS  Google Scholar 

  27. Malaisamy R, Mehendran R, Mohan D, Rajendran M, Mohan V (2002) J Appl Polym Sci 86:1749

    Article  CAS  Google Scholar 

  28. Malaisamy R, Mehendran R, Mohan D J (2002) J Appl Polym Sci 84:430

    Article  CAS  Google Scholar 

  29. Kdela V, Richau K, Bleha M, Paul D (2001) Separat Purific Technol 22:655

    Article  Google Scholar 

  30. Blanco JF, Nguyen, QT, Schaetzel P (2002) J Appl Polym Sci 84:2461

    Article  CAS  Google Scholar 

  31. Manea C, Mulder M (2002) J Membr Sci 206:443

    Article  CAS  Google Scholar 

  32. Manea C, Mulder M (2002) Desalination 147:179

    Article  CAS  Google Scholar 

  33. Dyck A, Fritsch D, Nunes SP (2002) J Appl Polym Sci 86:2820

    Article  CAS  Google Scholar 

  34. Xu ZL, Chung TS, Loh KC, Lim BC (1999) J Membr Sci 158:41

    Article  CAS  Google Scholar 

  35. Foldes E, Fekete E, Karasz FE, Pukanszky B (2000) Polymer 41:975

    Article  CAS  Google Scholar 

  36. Chung TS, Xu ZL (1998) J Membr Sci 147:35

    Article  CAS  Google Scholar 

  37. Chung TS, Click M, Power EJ (1993) Polym Eng Sci 33:1042

    CAS  Google Scholar 

  38. Chung TS (1993) Polym Eng Sci 34:428

    Google Scholar 

  39. Parker G, Hara M (1997) Polymer 38:2701

    Article  CAS  Google Scholar 

  40. Hara M, Parker GJ (1992) Polymer 33:4650

    Article  CAS  Google Scholar 

  41. Tan LS, Arnold FE, Chuah HH (1991) Polymer 32:370

    Article  Google Scholar 

  42. MacKnight WJ, Sakurai K, Douglas EP (1992) Macromolecules 25:4506

    Google Scholar 

  43. Gieselman MB, Reynolds JR (1990) Macromolecules 23:3118

    CAS  Google Scholar 

  44. Deimede V, Voyiatzis GA, Kallitsis JK, Qingfeng L, Bjerrum NJ (2000) Macromolecules 33:7609

    Article  CAS  Google Scholar 

  45. Hasiotis C, Deimede V, Kontoyannis C (2001) Electrochim Acta 46:2401

    Article  CAS  Google Scholar 

  46. Strobl G (1997) The physics of polymers, 2nd edn. Springer-Verlag, Berlin Heidelberg New York

  47. Venkatasubramanian N, Dean DR, Dang TD, Price GE, Arnold FE (2000) Polymer 41:3213

    Article  CAS  Google Scholar 

  48. Chuah HH, Kyu T, Helminiak TE (1987) Polymer 28:2130

    Article  CAS  Google Scholar 

  49. Krause B, Sijbesma HJP, Munuklu P, van der Vegt NFA, Wessling M (2001) Macromolecules 34:8792

    Article  CAS  Google Scholar 

  50. Krause B, Boreeigter ME, van der Vegt NFA, Strathmann H, Wessling M (2001) J Membr Sci 187:181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge the financial support provided by the Air Force Office of Scientific Research (Directorate of Chemistry and Materials Science) through grant F49620-98-1-0319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Mark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Venkatasubramanian, N., Houtz, M.D. et al. Molecular composites by incorporation of a rod-like polymer into a functionalized high-performance polymer, and their conversion into microcellular foams. Colloid Polym Sci 282, 502–510 (2004). https://doi.org/10.1007/s00396-003-0974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0974-2

Keywords

Navigation