Skip to main content
Log in

Dissipative structures formed in the course of drying the aqueous solution of n-dodecyltrimethylammonium chloride on a cover glass

  • Original contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Macroscopic and microscopic dissipative structural patterns are formed in the course of drying an aqueous solution of n-dodecyltrimethylammonium chloride on a cover glass. Broad ring patterns of the hill accumulate with detergent molecules to form around the outside edges of the film solution in the macroscopic scale. The drying time (T) and the pattern area (S) decrease and increase respectively, as the detergent concentration increases. T decreases significantly as the ethanol fraction increases in the aqueous ethanol mixtures, whereas S increases as the fraction increases. Both T and S decrease as the concentrations of KCl, CaCl2 or LaCl3 increase. Cross-, branch-, and arc-like microscopic patterns are observed in the separated block regions. The convection of water and detergents at different rates under gravity and the translational and rotational Brownian movement of the latter are important for macroscopic pattern formation. Microscopic patterns are determined by the translational Brownian diffusion of the detergent molecules and the electrostatic and the hydrophobic interactions between the detergents and/or between the detergent and cell wall in the course of the solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f.
Fig. 2a–d.
Fig. 3a–f.
Fig. 4a–d.
Fig. 5a–d.
Fig. 6a–d.
Fig. 7a–d.
Fig. 8a–d.

Similar content being viewed by others

References

  1. Vanderhoff JW (1973) J Polymer Sci Symp 41:155

    Google Scholar 

  2. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

  3. Cross MC, Hohenberg (1993) Rev Mod Phys 65:851

    CAS  Google Scholar 

  4. Ohara PC, Heath JR, Gelbart WM (1997) Angew Chem 109:1120

    Google Scholar 

  5. Ohara PC, Heath JR, Gelbart WM (1998) Langmuir 14:3418

    CAS  Google Scholar 

  6. Uno K, Hayashi K, Hayashi T, Ito K, Kitano H (1998) Colloid Polymer Sci 276:810

    CAS  Google Scholar 

  7. Gelbart WM, Sear RP, Heath JR, Chang S (1999) Faraday Discuss 112:299

    CAS  Google Scholar 

  8. Van Duffel B, Schoonheydt RA, Grim CPM, De Schryver FC (1999) Langmuir 15:7520

    Article  Google Scholar 

  9. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    CAS  Google Scholar 

  10. Brock SL, Sanabria M, Suib SL, Urban V, Thiyagarajan P, Potter DI (1999) J Phys Chem 103:7416

    CAS  Google Scholar 

  11. Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem 104:8635

    CAS  Google Scholar 

  12. Ge G, Brus L (2000) J Phys Chem 104:9573

    CAS  Google Scholar 

  13. Chen KM, Jiang X, LC Kimerling, Hammond PT (2000) Langmuir 16:7825

    CAS  Google Scholar 

  14. Lin XM, Jaenger HM, Sorensen CM, Klabunde (2001) J Phys Chem 105:3353

    CAS  Google Scholar 

  15. Kokkoli E, Zukoski CF (2001) Langmuir 17:369

    CAS  Google Scholar 

  16. Ung T, Liz-Marzan, Mulvaney (2001) J Phys Chem B 105:3441

    CAS  Google Scholar 

  17. Shimomura M, Sawadaishi T (2001) Curr Opin Colloid Interface Sci 6:11

    Google Scholar 

  18. Okubo T, Okuda S, Kimura H (2002) Colloid Polymer Sci 280:454

    CAS  Google Scholar 

  19. Okubo T, Kimura K, Kimura H (2002) Colloid Polymer Sci 280:1001

    Article  CAS  Google Scholar 

  20. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JThG (1970) In: Goldfinger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York

  21. Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881

    CAS  Google Scholar 

  22. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interface Sci 44:330

    CAS  Google Scholar 

  23. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Biophys Chem 11:411

    CAS  Google Scholar 

  24. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    CAS  Google Scholar 

  25. Pieranski P (1983) Contemp Phys 24:25

    CAS  Google Scholar 

  26. Ottewill RH (1985) Ber Bunsenges Phys Chem 89:517

    CAS  Google Scholar 

  27. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Phys Rev Lett 57:1733

    Article  CAS  PubMed  Google Scholar 

  28. Pusey PN, van Megen W (1986) Nature 320:340

    CAS  Google Scholar 

  29. Okubo T (1988) Acc Chem Res 21:281

    CAS  Google Scholar 

  30. Okubo T (1997) Curr Topics Colloid Interface Sci 1:169

    CAS  Google Scholar 

  31. Okubo T (2002) In: Hubbard A (ed) Encyclopedia of surface and colloid science. Dekker, New York, p 1300.

  32. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2003) Colloid Polymer Sci (in press).

  33. Latterini L, Blossey R, Hofkens J, Vanoppen P (1999) Langmuir 15:3582

    CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of Education, Science, Sports and Culture is thanked for grants-in-aid for Scientific Research on Priority Area (A) (11167241) and for Scientific Research (B) (11450367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Kanayama, S. & Kimura, K. Dissipative structures formed in the course of drying the aqueous solution of n-dodecyltrimethylammonium chloride on a cover glass. Colloid Polym Sci 282, 486–494 (2004). https://doi.org/10.1007/s00396-003-0972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0972-4

Keywords

Navigation