Skip to main content
Log in

Surface crystallization and phase transitions of the adsorbed film of F(CF2)12(CH2)16H at the surface of liquid tetradecane

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interaction between a long chain alkane, tetradecane (abbreviated H14), molecule and a semi-fluorinated alkane, 1-perfluorododecyl-hexadecane F(CF2)12(CH2)16H (abbreviated F12H16), molecule at the air/ H14 solution interface was studied by measuring the surface tension of the H14 solutions of F12H16 as a function of temperature and bulk concentration under atmospheric pressure. Pure liquid H14 freezes without forming a condensed film at its surface. Nevertheless, a very small amount of F12H16 initiates the surface freezing of H14. In contrast to the F12H16-hexadecane (abbreviated H16) system, the condensed monolayer of H14 has a finite solubility of F12H16 in the F12H16-H14 system. By further increasing the bulk concentration of F12H16, the F12 chains of the F12H16 molecules form the other closely packed condensed state. Hence, as in the case of the H16 system, the H14 system also exhibits a surface hetero-azeotrope behavior in the lower temperature region. Below the surface hetero-azeotropic point, the condensed H14 monolayer containing a small amount of F12H16 is completely replaced by the condensed monolayer of F12H16. At 2 °C, for example, a surface of H14 solution of F12H16 covered with a gaseous film of F12H16 is replaced by a condensed H14 monolayer containing an almost gaseous state of F12H16, and is then completely replaced by the condensed monolayer of F12H16 with increasing bulk concentration. Above the temperature of the triple point for the F12H16 monolayer, the F12H16-H14 system exhibits a gaseous, expanded, and condensed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Earnshaw JC, Hughes C (1992) J Phys Rev A 46:R4494

    Article  CAS  Google Scholar 

  2. Aratono M, Takiue T, Ikeda N, Nakamura A, Motomura K (1993) J Phys Chem 97:5141

    CAS  Google Scholar 

  3. Wu XZ, Ocko BM, Sirota EB, Sinha SK, Deutsch M, Cao BH, Kim MW (1993) Science 261:1018

    CAS  Google Scholar 

  4. Wu XZ, Sirota EB, Sinha SK, Ocko BM, Deutsch M (1993) Phys Rev Lett 70:958

    Article  CAS  PubMed  Google Scholar 

  5. Sefler GA, Du Q, Miranda PB, Shen YR (1995) Chem Phys Lett 235:347

    Article  CAS  Google Scholar 

  6. Pfohl T, Beaglehole D, Riegler H (1996) Chem Phys Lett 260:82

    Article  CAS  Google Scholar 

  7. Doerr A, Wu XZ, Ocko BM, Sirota EB, Gang O, Deutsch M (1997) Colloids Surf A 128:63

    Article  CAS  Google Scholar 

  8. Ocko BM, Wu XZ, Sirota EB, Sinha SK, Gang O, Deutsch M (1997) Phys Rev E 55:3164

    Article  CAS  Google Scholar 

  9. Yamamoto Y, Ohara H, Kajikawa K, Ishii H, Ueno N, Seki K, Ouchi Y (1999) Chem Phys Lett 304:231

    Article  CAS  Google Scholar 

  10. Twieg RJ, Russell TP, Siemens R, Rabolt JF (1985) Macromolecules 18:1361

    CAS  Google Scholar 

  11. Höpken J, Pugh C, Richtering W, Mšller M (1988) Makromol Chem 189:911

    Article  Google Scholar 

  12. Turberg MP, Brady JE (1988) J Am Chem Soc 110:7797

    CAS  Google Scholar 

  13. Lo Nostro P, Chen S-H (1993) J Phys Chem 97:6535

    Google Scholar 

  14. Gaines GLJr (1991) Langmuir 7:3054

    CAS  Google Scholar 

  15. Binks BP, Fletcher PDI, Sager WFC, Thompson RL (1995) Langmuir 11:977

    CAS  Google Scholar 

  16. Hayami Y, Findenegg GH (1997) Langmuir 13:4865

    Article  CAS  Google Scholar 

  17. Gang O, Ellmann J, Möller M, Kraack H, Sirota EB, Ocko BM, Deutsch M (2000) J Europhys Lett 49:761

    CAS  Google Scholar 

  18. Marczuk P, Lang P, Findenegg GH, Mehta SK, Möller M (2002) Langmuir 18:6830

    Article  CAS  Google Scholar 

  19. Mckenna CE, Knock MM, Bain CD (2000) Langmuir 16:5853

    Article  CAS  Google Scholar 

  20. Zhang Z, Mitrinovic DM, Williams SM, Huang Z, Schlossman ML (1999) J Chem Phys 110:7421

    Article  CAS  Google Scholar 

  21. Andreas JM, Hauser EA, Tucker WB (1938) J Phys Chem 42:1001

    CAS  Google Scholar 

  22. Hayami Y (1996) Colloid Polym Sci 274:643

    CAS  Google Scholar 

  23. Höpken J (1991) PhD thesis. University of Twente, The Netherlands

  24. Lo Nostro P (1995) Adv Colloid Interface Sci 56:245

    Article  Google Scholar 

  25. Motomura K (1978) J Colloid Interface Sci 64:348

    CAS  Google Scholar 

  26. Motomura K, Aratono M (1987) Langmuir 3:304

    CAS  Google Scholar 

  27. Hansen RS (1962) J Phys Chem 66:410

    CAS  Google Scholar 

  28. Matubayasi N, Motomura K, Aratono M, Matuura R (1978) Bull Chem Soc Jpn 51:2800

    CAS  Google Scholar 

  29. Hayami Y, Uemura A, Ikeda N, Aratono M, Motomura K (1995) J Colloid Interface Sci 172:142

    Article  CAS  Google Scholar 

  30. Motomura K, Iwanaga S, Hayami Y, Uryu S, Matuura R (1981) J Colloid Interface Sci 80:32

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Chikushi Jogakuen Junior College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hayami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayami, Y., Sakamoto, H. Surface crystallization and phase transitions of the adsorbed film of F(CF2)12(CH2)16H at the surface of liquid tetradecane. Colloid Polym Sci 282, 461–467 (2004). https://doi.org/10.1007/s00396-003-0969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0969-z

Keywords

Navigation