Skip to main content
Log in

Interactions between gelatin and sodium dodecyl sulphate: binding isotherm and solution properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interaction between sodium dodecyl sulphate (SDS) and gelatin was studied at pH 4.5 and 6.5 where the gelatin is positively charged (i.e.p. 8). At pH 4.5 a SDS/gelatin concentration range was found where gelatin precipitates. At pH 6.5 the SDS-gelatin complex remains soluble although three SDS concentration domains were distinguished where the SDS-gelatin complex had very different affinities for the solvent. Below C1 the complex was highly surface active but other measurements (viscosity, potentiometry, protons uptake) did not reveal any particular consequence of binding. Between C1 and C2 the molecular size decreased (viscosity lowering) upon charge neutralization and collapse about small SDS aggregates (17 SDS molecules per gelatin molecule). Above C2 a cooperative binding mechanism lead to the formation of SDS aggregates; the complex stretched out and turned strongly hydrophilic (the viscosity increases, low surface activity). At saturation one gelatin molecule bound about 200 SDS molecules. Above the overlap concentration (about 3 wt%) SDS aggregates formed between several gelatin molecules, the viscosity increased continuously with SDS concentration and the binding ratio was lower than in dilute gelatin solutions. A very good correspondence was found between the different analytical data including turbidity, viscosity, surface tension, protons uptake and direct potentiometric SDS binding measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Luzzi LA, Gerraughty RJ (1964) J Pharm Sci 53:429

    CAS  Google Scholar 

  2. Luzzi LA, Gerraughty RJ (1967) J Pharm Sci 56:634

    CAS  PubMed  Google Scholar 

  3. Okada J, Kusai A, Ueda S (1985) J Microencapsulation 2:163

    CAS  PubMed  Google Scholar 

  4. Magdassi S, Vinetsky Y (1995) J Microencapsulation 12:537

    CAS  PubMed  Google Scholar 

  5. Vinetsky Y, Magdassi S (1997) J Colloid Interface Sci 189:83

    Article  CAS  Google Scholar 

  6. Vinetsky Y, Magdassi S (1997) Colloids Surf, A 122:227

  7. Moya S, Dahne L, Voigt A, Leporatti S, Donath E, Möhwald H (2001) Colloids Surf, A 183:27

    Google Scholar 

  8. Decher G, Hong JD (1991) Ber Bunsenges Phys Chem 95:1430

    CAS  Google Scholar 

  9. Pankurst KGA, Smith RCM (1944) Trans Faraday Soc 40:465

    Google Scholar 

  10. Knox WJ, Wright JF (1965) J Colloid Interface Sci 20:177

    CAS  Google Scholar 

  11. Knox WJ, Parshall TO(1970) J Colloid Interface Sci 33:16

    CAS  Google Scholar 

  12. Knox WJ, Parshall TO (1971) J Colloid Interface Sci 40:290

    Google Scholar 

  13. Wustnek R, Hernel H, Kretzschmar G (1983) J Colloid Inetrface Sci 93:419

    Google Scholar 

  14. Asnacios A, Langevin D, Argillier JF (1996) Macromolecules 29:7412

    Article  CAS  Google Scholar 

  15. Greener J, Contestable BA, Bale MD (1987) Macromolecules 20:2490

    CAS  Google Scholar 

  16. Howe, Wilkins AG, Goodwin JW (1992) J Photogr Sci 40:234

    CAS  Google Scholar 

  17. Chen J, Dickinson E (1995) Colloids Surf, A 100:255

  18. Tavernier BH (1983) J Colloid Interface Sci 93:419

    CAS  Google Scholar 

  19. Sovilj V (1998) Colloid Polym Sci 276:328

    Article  CAS  Google Scholar 

  20. Whitesides TH, Miller DD (1994) Langmuir 10:2899

    CAS  Google Scholar 

  21. Griffiths PC, Roe JA, Bales BL, Pitt AR, Howe AM (2000) Langmuir 16:8248

    Article  CAS  Google Scholar 

  22. Chen J, Dickinson E (1995) Colloids Surf, A 100:267

  23. Henriquez M, Abuin E, Lissi E (1993) Colloid Polym Sci 271:960

    CAS  Google Scholar 

  24. Mokus M, Kragh-Hansen U, Letellier P, Le Maire M, Moller JV (1998) Anal Biochem 264:34

    Article  CAS  PubMed  Google Scholar 

  25. Huggins ML (1942) J Am Chem Soc 64:2716

    CAS  Google Scholar 

  26. Kraemer EO (1938) Ind Eng Chem Res 30:1200

    CAS  Google Scholar 

  27. Scatchard G (1949) Ann New York Acad Sci 51:660

    CAS  Google Scholar 

  28. Kwak JCT (1998) Polymer-surfactant systems. Surfactant Science Series, Marcel Dekker, New York

  29. Griffiths PC, Cheung AYF (2002) Mater Sci Technol 18:591

    Article  CAS  Google Scholar 

  30. Godard ED (1993) Interactions of surfactants with polymers and proteins. CRC Press, Boca Raton, FL

  31. Isemura T, Tokiwa F, Ikeda S (1955) Bull Chem Soc Japan 28:555

    Google Scholar 

  32. Tomasic V, Tomasic A, Filipovic-Vincekovic N (2002) J Colloid Interface Sci 256:462

    Article  CAS  Google Scholar 

  33. Miller DD, Lenhart W, Antalek BJ, Williams AJ, Hewitt JM (1994) Langmuir 10:68

    CAS  Google Scholar 

  34. Arora JPS, Soam D, Singh SP, Kumar R (1984) Tenside Detergents 21:87

    CAS  Google Scholar 

  35. Arora JPS, Pal C, Dutt D (1991) Tenside Surf Det 28:215

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Foissy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buron, C., Filiatre, C., Membrey, F. et al. Interactions between gelatin and sodium dodecyl sulphate: binding isotherm and solution properties. Colloid Polym Sci 282, 446–453 (2004). https://doi.org/10.1007/s00396-003-0967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0967-1

Keywords

Navigation