Skip to main content
Log in

Examination of the flow behaviour of HEC and hmHEC solutions using structure–property relationships and rheo-optical methods

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effect of solely intermolecular interactions due to hydrophobic alkyl substituents on the flow behaviour of hmHEC solutions was determined via comparison of the structure–property relationships of hmHECs and HECs based on the overlap parameter c[η]. For this purpose the η0–[η]–c relationship for HEC was determined to be η0=8.91·10–4+8.91·10–4·c[η]+1.07·10–3(c[η])2+1.83·10–7(c[η])5.56. In addition the structure–property relationship for the longest relaxation time via the λ–[η]–c relationship λ·c1+1/a=2.65·10–8(c[η])2+4.25·10–8(c[η])3+5.44·10–12(c[η])5.27 has been determined. Although the hmHECs had a higher zero shear viscosity than HECs of comparable overlap parameters at a range of 1<c[η]<13, the flow curves could be described via the same λ–[η]–c relationship in that range, indicating a timescale of the intermolecular interactions below the longest relaxation time.

The behaviour of the supramolecular structures in solution with an applied shear field was characterized by rheo-optical analysis of the shear thickening behaviour which occurs with addition of surfactant. Contrary to expectations, a slope >1 of the flow birefringence Δn′ as a function of shear rate could be observed in double logarithmic plotting. The degree of orientation of the flow birefringence φ primarily decreases with increasing shear rate, but increases later on at a characteristic shear rate. These two exceptional phenomena can be explained by a pronounced anisotropy of the polymer coils caused by the dilatant flow.

This assumption is backed up by the occurrence of a maximum in the dichroism curves which is caused by a finite stability of the aggregated structures in solution. On a molecular basis, these observations agree with the theoretically predicted (Witten and Cohen) transition from intra- to intermolecular polymer micelles. The detected aggregates correspond with the polymer chains that are aligned in one micelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

a:

Exponent of the Mark–Houwink relationship

c[η]*:

Critical concentration (determined by intrinsic viscosity)

cLS*:

Critical concentration (determined by light scattering)

HASE:

Hydrophobically modified alkali-swellable emulsions

HEUR:

Hydrophobically modified ethoxylated urethanes

hmHEC:

Hydrophobically modified hydroxyethylcellulose

HEC:

Hydroxyethylcellulose

HPMC:

Hydroxypropylmethylcellulose

M:

Molecular mass

MS:

Molar degree of substitution

n:

Slope of the flow curve

SEC:

Size exclusion chromatography

RG :

Radius of gyration

η:

Viscosity

η0 :

Zero-shear viscosity

ηsp :

Specific viscosity

λ:

Longest relaxation time

Δn′:

Birefringence

Δn′i :

Intrinsic birefringence

Δn′f :

Form birefringence

Δn″:

Dichroism

φ:

Orientation of the birefringence

γ̇:

Shear rate

References

  1. Graessley WW (1965) J Chem Phys 43:2696

    Article  CAS  Google Scholar 

  2. Clasen C, Kulicke WM (2001) Prog Polym Sci 26:1839–1919

    Article  CAS  Google Scholar 

  3. Chan AN, Clayton AB, Modi JJ (1998) US Patent 5,804,166

  4. Bolich RE Jr, Norton MJ, Russel GD (1992) US Patent 5,104,646

  5. Majewicz TG, Young TS (1991) US Patent 4,994,112

  6. Bock J, Kowalik RM, Siano DB, Turner SR (1989) US Patent H577

  7. Landoll LM (1985) US Patent 4,529,523

  8. Sau A, Landoll LM, Odell JA, Keller A, Muller AJ (1989) Adv Chem Ser 223:343–364

    Article  CAS  Google Scholar 

  9. Goodwin JW, Hughes RW, Lam CK, Miles JA, Warren BC (1989) Adv Chem Ser 223:365–378

    Article  CAS  Google Scholar 

  10. Maestro A, Gonzalez C, Gutierrez JM (2002) J Rheol 46:127–143

    Article  CAS  Google Scholar 

  11. Nyström B, Thuresson K, Lindman B (1995) Langmuir 11:1994–2002

    Article  Google Scholar 

  12. Panmai S, Prudhomme RK, Pfeiffer DG (1999) Colloids Surf 147:3–15

    Article  CAS  Google Scholar 

  13. Piculell L, Nilsson S, Sjösröm J, Thuresson K (1998) Abstr Pap Am Chem Soc 216:025-Cell Part 1

    Google Scholar 

  14. Sivadasan K, Somasundaran P (1990) Colloids Surf 49:229–239

    Article  CAS  Google Scholar 

  15. Kaczmarski JP, Tarng MR, Ma Z, Glass E (1999) Colloids Surf 147:39–53

    Article  CAS  Google Scholar 

  16. Picullel L, Guillement F, Thuresson K, Shubin V, Ericsson O (1996) Adv Colloid Interface Sci 63:1–21

    Article  Google Scholar 

  17. Kjöniksen AL, Nilsson S, Thuresson K, Lindman B, Nyström B (2000) Macromolecules 33:877–886

    Article  Google Scholar 

  18. Vorobyova O, Winnik MA (2001) Langmuir 17(5):1357–1366

    Article  CAS  Google Scholar 

  19. Witten TA Jr, Cohen MH (1985) Macromolecules 18:1915–1918

    Article  CAS  Google Scholar 

  20. Ahn KH, Osaki K (1994) J Non-Newtonian Fluid Mech 55:215

    Article  CAS  Google Scholar 

  21. Vrahopoulou EP, McHugh AJ (1987) J Rheol 31(5): 371–384

    Article  CAS  Google Scholar 

  22. Johnson SJ, Frattini L, Fuller GG (1985) J Colloid Interface Sci 104:440–455

    Article  CAS  Google Scholar 

  23. Reinhardt UT, Meyer de Groot EL, Fuller GG, Kulicke WM (1995) Macromol Chem Phys 196:63–74

    Article  CAS  Google Scholar 

  24. Baar A, Kulicke WM, Szablikowski K, Kiesewetter R (1994) Macromol Chem 195:1483

    Article  CAS  Google Scholar 

  25. Kulicke, WM (1986) Fließverhalten von stoffen und stoffgemischen. Hüthig und Wepf, Heidelberg

  26. Kulicke WM, Kull AH, Kull W, Thielking H, Engelhardt J, Pannek JB (1996) Polymer 37(3):2723–2731

    Article  CAS  Google Scholar 

  27. Bueche F (1952) J Chem Phys 20:1959

    Article  CAS  Google Scholar 

  28. Bueche F (1956) J Chem Phys 25:599

    Article  CAS  Google Scholar 

  29. Simha R, Zakin L (1962) J Colloid Sci 17:270–287

    Article  CAS  Google Scholar 

  30. Kulicke WM, Klare J (1980) Angew Makromol Chem 84:67

    Article  CAS  Google Scholar 

  31. Bartsch S (1998) Charakterisierung kolloidaler systeme mittels größenausschlußchromatographie, querflußfraktionierung und lichtstreuung. Shaker, Aachen

  32. Kulicke WM (1979) Macromol Chem 180:543

    Article  CAS  Google Scholar 

  33. Rouse PE (1953) J Chem Phys 21:1272

    Article  CAS  Google Scholar 

  34. Ferry JD (1978) Pure Appl Chem 50:299–308

    Article  CAS  Google Scholar 

  35. Ferry JD, Landel RF, Williams ML (1955) J Appl Phys 26:359–362

    Article  CAS  Google Scholar 

  36. Ferry JD, Landel RF, Williams ML (1955) J Appl Phys 26:359–362

    Article  CAS  Google Scholar 

  37. Kulicke WM, Kniewske R, Müller RJ, Prescher M, Kehler H (1986) Ang Makromol Chem 142:29

    Article  CAS  Google Scholar 

  38. Clasen C, Kulicke WM (2001) Rheol Acta 40:74–85

    Article  CAS  Google Scholar 

  39. Tam KC, Jenkins RD, Winnik MA, Basset DR (1998) Macromolecules 31:4149–4159

    Article  CAS  Google Scholar 

  40. Le Mein JF, Tassin JF, Corpart JM (1999) J Rheol 43:1423–1436

    Article  Google Scholar 

  41. Clasen C, Kulicke WM (2002)J Rheol (in press)

  42. Fuller GG (1995) Optical rheometry of complex fluids. Oxford University Press, New York

  43. Witten TA Jr, Cohen MH (1985) Macromolecules 18:1915–1918

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner-Michael Kulicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laschet, M., Plog, J.P., Clasen, C. et al. Examination of the flow behaviour of HEC and hmHEC solutions using structure–property relationships and rheo-optical methods. Colloid Polym Sci 282, 373–380 (2004). https://doi.org/10.1007/s00396-003-0949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0949-3

Keywords

Navigation