Skip to main content
Log in

The interaction between poly(vinylpyrrolidone) and reversed micelles of water/AOT/n-heptane

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract.

The interactions between poly(vinylpyrrolidone) (PVP) and the reversed micelles composed of water, AOT, and n-heptane are investigated with the aid of phase diagram, measurements of conductivity and viscosity, Fourier transform infrared (FTIR) spectrum, and dynamic light scattering (DLS). The phase diagrams of water/AOT/heptane in the presence of and absence of PVP are given. The conductivity of the water/AOT/heptane reversed micelle without PVP initially increases and then decreases with the increase of water content, ω0 (the molar ratio of water to AOT), while the plots of conductivity (κ) versus ω0 of the reversed micelle in the presence of PVP depend on the PVP concentrations. The plot of κ versus ω0 with 2.0%wt PVP is similar to that without PVP. Only the ω0,max (the water content that the maximum conductivity corresponds to) is larger than that without PVP. Nevertheless, the conductivity of the reversed micelle containing more than 4%wt PVP always rises with the increase of the water content in the measured range. The DLS results indicate that the hydrodynamic radius (Rh) in the presence and absence of PVP rises with the increase of ω0. The plots with PVP and without PVP have almost the same value when ω0<17; and after that, it quickly increases with the increase of ω0. It is interesting to find that there is almost no effect of the PVP concentration on the viscosity and Rh of the reversed micelle at ω0=15. The FTIR results suggest that the contents of SO3 --bound water and Na+-bound water both decrease with PVP added, while the content of the bulky-like water increases. However, the trapped water in the hydrophobic chain of the surfactant is nearly unaffected by PVP. It is also found from the FTIR that the carbonyl group stretching vibration of AOT is fitted into two sub-peaks, which center at 1740 and 1729 cm-1, corresponding to the trans and cis conformations of AOT, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9A–B.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Temsamani MB, Maeck M, Hassani IEI, Hurwitz HD (1998) J Phys Chem B 102:3335

    Article  CAS  Google Scholar 

  2. Martin CA, Magid LJ (1981) J Phys Chem 85:3938

    CAS  Google Scholar 

  3. Casado J, Izquierdo C, Fuentes S, Moyá ML (1994) J Chem 71:446

    CAS  Google Scholar 

  4. Schulman JH, Stoeckenius W, Prince LM, (1959) J Phys Chem 63:1677

    CAS  Google Scholar 

  5. De TK, Maitra A, (1995) Adv Colloid Interface Sci 59:95

    Article  CAS  Google Scholar 

  6. Pileni MP (1993) J Phys Chem 97:6961

    CAS  Google Scholar 

  7. Pileni MP (1993) Adv Colloid Interface Sci 46:139

    Article  CAS  Google Scholar 

  8. Cui ZG, Yin FS (1999) Emulsifying technology and application. Light Industry Press of China, p 90

  9. Haandrikman G, Daan GJR, Kerkhof FJM, Van Os NM, Rupert LAM (1992) J Phys Chem 96:9061

    CAS  Google Scholar 

  10. D'Angelo M, Onori G, Santucci A (1993) J Phys Chem 98:3189

    Google Scholar 

  11. Onori G, Santucci A (1993) J Phys Chem 97:5430

    CAS  Google Scholar 

  12. Li Q, Weng SF, Wu JG, Zhou NF (1998) J Phys Chem 102:3168

    Article  CAS  Google Scholar 

  13. Li Q, Li T, Wu JG, Zhou NF (2000) J Colloid Interface Sci 229:298

    Article  CAS  PubMed  Google Scholar 

  14. Zhou NF, Li Q, Wu JG, Chen J, Weng SF, Xu GX (2001) Langmuir 17:4505

    Article  CAS  Google Scholar 

  15. MacDonald H, Bedwell B, Gulari E, (1996) Langmuir 2:704

    Google Scholar 

  16. Jain TK, Varshney M, Maitra A, (1989) J Phys Chem 93:7409

    CAS  Google Scholar 

  17. González-Blanco C, Rodríguez LJ, Velázquez MM (1997) Langmuir 13:1938

    Article  Google Scholar 

  18. Hou ZS, Li F, Wang HQ (2001) Colloid Polym Sci 279(1):8

    Article  CAS  Google Scholar 

  19. Tamamusbi B, Watanabe N (1980) Colloid Polym Sci 258:174

    Google Scholar 

  20. Huang JS (1999) Langmuir 15:3718

    Article  Google Scholar 

  21. Ikishima Y, Saito N, Arai M (1997) J Colloid Interface Sci 186:254

    Article  PubMed  Google Scholar 

  22. Hayes DG, Gulari E (1995) Langmuir 11:4695

    CAS  Google Scholar 

  23. Luan YX, Xu GY, Yuan SL, Xiao L, Zhang Z Q (2002) Langmuir 18:8700

    Article  CAS  Google Scholar 

  24. Valstar A, Brown W, Almgren M (1999) Langmuir 15:2366

    Article  CAS  Google Scholar 

  25. Xu GY, Zhang L, Mao HZ, Bao M, Lu Y (2001) Acta Phys Chim Sin 17:37 (in Chinese)

    CAS  Google Scholar 

  26. Meziani A, Touraud D, Zradba A, Clausse M, Kunz W (2000) J Mol Liquids 84:301

    Article  CAS  Google Scholar 

  27. Filankembo A, André P, Lisiecki I, Petit C, Gulik-Krzywicki T, Ninham BW, Pileni MP (2000) Colloids Surf A: 174:221

  28. César ATL, Wyn B, Mats A, Sílvia MBCosta (2000) Langmuir 16:465

    Article  Google Scholar 

  29. Huruguen JP, Authier M, Greffe JL, Pileni PM (1991) Langmuir 7:243

    CAS  Google Scholar 

  30. Cassin G, Duda Y, Holovko M, Badiali JP, Pileni MP (1997) J Chem Phys 107:2683

    Article  CAS  Google Scholar 

  31. Valstar A, Almgren M, Brown W (2000) Langmuir 16:922

    Article  CAS  Google Scholar 

  32. Christoff M, Silveira N P, Samios D (2001) Langmuir 17:2885

    CAS  Google Scholar 

  33. Li ZM, Ye QM, Yang JP (1983) Macromol Comm 3:184 (in Chinese)

    Google Scholar 

  34. Kotlarchyk M (1982) J Phys Chem 86:3273

    CAS  Google Scholar 

  35. Liu K, Cruzan JD, Saykally RJ (1996) Science 271:929

    CAS  Google Scholar 

  36. Giammona G, Goffredi F, Liveri VT, Vassallo G (1992) J Colloid Interface Sci 154:411

    CAS  Google Scholar 

  37. Kitano H, Ichikawa K, Ide M, Fukuda M, Mizuno W (2001) Langmuir 17:1889

    Article  CAS  Google Scholar 

  38. Hertz G (1975) In: Franks F (ed) Water—a comprehensive treatise, vol 3. Plenum Press, New York, chap 7

  39. Xu GY, Zhang L, Yuang SL, Huang XR, Li GZ (2001) J Dispersion Sci Technol 22 (6):563

    Google Scholar 

Download references

Aknowledgement.

The authors gratefully acknowledge financial support from National Natural Science Foundation (29973023) and National Microgravity Laboratory, Institute of Mechanics, CAS, Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiying Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, Y., Xu, G., Dai, G. et al. The interaction between poly(vinylpyrrolidone) and reversed micelles of water/AOT/n-heptane. Colloid Polym Sci 282, 110–118 (2003). https://doi.org/10.1007/s00396-003-0900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0900-7

Keywords

Navigation