Colloid and Polymer Science

, Volume 281, Issue 8, pp 701–707 | Cite as

Electrostatic interaction between charged colloid particles entrapped in a thin electrolyte film: confinement effects

  • Vesselin. N. Paunov
Original Contribution


In this paper we consider the electrostatic interaction between charged particles confined in a thin electrolyte film. We calculate the electrostatic interaction energy between two charged particles in electrolyte film for different configurations of the particles at the film surfaces. Simple asymptotic formulae are derived for the interaction between: (i) two charged particles located in the middle of the film, (ii) two charged particles adsorbed on a single film surface and (iii) two charged particles adsorbed on opposite film surfaces. The results obtained have direct application in studies of 2D colloid crystal formation in confined geometries, in thin liquid films and oil-in-water emulsions stabilised by solid particles.


Electrostatic interaction Image forces Thin liquid films Confined geometry Adsorbed particles 


  1. 1.
    Derjaguin BV (1989) Theory of stability of colloids and thin liquid films. Plenum, New YorkGoogle Scholar
  2. 2.
    Stillinger FH (1961) J Chem Phys 35:1584Google Scholar
  3. 3.
    Hurd A (1985) J Phys A: Math Gen 18:L1055Google Scholar
  4. 4.
    Pieranski P (1980) Phys Rev Lett 45:569CrossRefGoogle Scholar
  5. 5.
    Earnshaw JC (1986) J Phys D: Appl Phys 19:1863Google Scholar
  6. 6.
    Goulding D, Hansen J-P (1998) Mol Phys 95:649CrossRefGoogle Scholar
  7. 7.
    Aveyard R, Clint JH, Nees D, Paunov VN (2000) Langmuir 16:1969CrossRefGoogle Scholar
  8. 8.
    Larsen AE, Grier DG (1997) Nature 385:230Google Scholar
  9. 9.
    Grier DG (1998) Nature 393:621CrossRefGoogle Scholar
  10. 10.
    Bowen WR, Sharif AO (1998) Nature 393:663CrossRefGoogle Scholar
  11. 11.
    Medina-Noyola M, Ivlev BI (1995) Phys Rev E 52:6281CrossRefGoogle Scholar
  12. 12.
    Carbajal-Tinoco MD, Castro-Roman F, Arauz-Lara JL (1996) Phys Rev E 53:3745CrossRefGoogle Scholar
  13. 13.
    Kepler GM, Fraden S (1994) Phys Rev Lett 73:356CrossRefPubMedGoogle Scholar
  14. 14.
    Crocker JC, Grier DG (1996) Phys Rev Lett 77:1897CrossRefPubMedGoogle Scholar
  15. 15.
    Trizac E, Raimbault J-L (1999) Phys Rev E 60:6530CrossRefGoogle Scholar
  16. 16.
    Trizac E (2000) Phys Rev E 62:R1465CrossRefGoogle Scholar
  17. 17.
    Neu JC (1999) Phys Rev Lett 82:1072Google Scholar
  18. 18.
    Sader JE, Chan DYC (2000) Langmuir 16:324CrossRefGoogle Scholar
  19. 19.
    Chen SB (1998) J Colloid Interface Sci 205:354CrossRefPubMedGoogle Scholar
  20. 20.
    Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New YorkGoogle Scholar
  21. 21.
    Richmond P (1974) J Chem Soc Faraday Trans 70:1066Google Scholar
  22. 22.
    Kralchevsky PA, Paunov VN (1992) Colloids Surf 64:245CrossRefGoogle Scholar
  23. 23.
    Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New YorkGoogle Scholar
  24. 24.
    Gradshtein IS, Ryzhik IM (1980) Table of integrals series and products, Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Surfactant and Colloid Group, Department of ChemistryUniversity of HullHullUnited Kingdom

Personalised recommendations