Skip to main content
Log in

Nanoporous silica films containing aluminum and titanium

  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

By utilizing surfactant aggregates as supramolecular templates, mesoporous and mesostructured silicas with highly ordered structures became available. The resulting mesoporous silicas are promising candidates to host various photo- and electro-active species along with catalytically active species, due to their large and controllable pore sizes, highly ordered pore arrangements with low dimensional geometries, and reactive surfaces. We have developed the rapid solvent evaporation method, which is a modified sol-gel process, for synthesizing the mesostructured silica-surfactant films as well as the mesoporous silica films. Supported thin films, self-standing films and bubbles of mesoporous silicas have been synthesized by the rapid solvent evaporation method. The microstructures of the films have also been successfully controlled by changing the synthetic conditions. Taking advantage of the ease of synthetic operation and the transparency and homogeneity of the resulting materials, we have been interested in the introduction of functional units into the mesostructured materials. This paper reports the synthesis of transparent films of titanium- and aluminum-containing nanoporous silicas to modify the surface properties (such as adsorptive and catalytic) of nanoporous silicas. The incorporation of Al led to the formation of cation exchange or acidic sites on the mesopore surface, as revealed by the cationic dye adsorption experiments. The photocatalytic reactions of the Ti-containing nanoporous silica films were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme 1.
Scheme 2.
Fig. 3. A
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988

    CAS  Google Scholar 

  2. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    CAS  Google Scholar 

  3. Moller K, Bein T (1998) Chem Mater 10:2950

    Article  CAS  Google Scholar 

  4. Ciesla U, Schüth F (1999) Microporous Mesoporous Mater 27:131

    Article  CAS  Google Scholar 

  5. Ogawa M (1994) J Am Chem Soc 116:7941

    CAS  Google Scholar 

  6. Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA (1996) Nature 379:703

    CAS  Google Scholar 

  7. Yang H, Coombs N, Sokolov I, Ozin GA Nature (1996) 381:589

  8. Ogawa M (2001) Current Topics Colloid Interface Sci 4:209

    CAS  Google Scholar 

  9. Ogawa M (1996) Chem Commun 1149

  10. Anderson MT, Martin JE, Odinek JG, Newcomer PP, Wilcoxon JP (1997) Microporous Mater 10:13

    Article  CAS  Google Scholar 

  11. Martin JE, Anderson MT, Odinek JG, Newcomer PP (1997) Langmuir 13:4133

    Article  CAS  Google Scholar 

  12. Ayral A, Balzer C, Dabadie T, Guizard C, Julbe A (1995) Catal Today 25:219

    Article  CAS  Google Scholar 

  13. Dabadie T, Ayral A, Guizard C, Cot L, Lacan P (1996) J Mater Chem 6:1789

    CAS  Google Scholar 

  14. Ogawa M (1995) Langmuir 11:4639

    CAS  Google Scholar 

  15. Ogawa M, Igarashi T, Kuroda K (1988) Chem Mater 10:1382

    Article  Google Scholar 

  16. Ferrer M, Lianos P (1996) Langmuir 12:5620

    Article  CAS  Google Scholar 

  17. Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Nature 389:364

    Article  CAS  Google Scholar 

  18. Sellinger A, Weiss PM, Nguyen A, Lu Y, Assink RA, Gong W, Brinker CJ (1998) Nature 394:256

    Article  CAS  Google Scholar 

  19. Huang MH, Dunn BS, Soyez H, Zink JI (1998) Langmuir 14:7331

    Article  CAS  Google Scholar 

  20. Hata H, Kimura T, Ogawa M, Sugahara Y, Kuroda K (2000) J Sol-Gel Sci Technol 19:543

    Google Scholar 

  21. Ogawa M, Ishikawa H, Kikuchi T (1998) J Mater Chem 8:1783

    Article  Google Scholar 

  22. Ogawa M, Kikuchi T (1998) Adv Mater 10:1077

    Article  CAS  Google Scholar 

  23. Ryoo R, Ko CH, Cho SJ, Kim JM (1997) J Phys Chem B 101:10610

    Article  CAS  Google Scholar 

  24. Ogawa M, Masukawa N (2000) Microporous Mesoporous Mater 38:35

    Article  CAS  Google Scholar 

  25. Honma I, Zhou HS, Kundu D, Endo A (2000) Adv Mater 12:1529

    Article  CAS  Google Scholar 

  26. Zhao D, Yang P, Margolese DI, Chmelka BF, Stucky GD (1998) Chem Commun 2499

  27. Zhao D, Yang P, Melosh N, Feng J, Chmelka BF, Stucky GD (1998) Adv Mater 10:1380

    Article  CAS  Google Scholar 

  28. Aksay I, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM (1996) Science 273:892

    CAS  PubMed  Google Scholar 

  29. Yang H, Coombs N, Dag Ö, Sokolov I, Ozin GA (1997) J Mater Chem 7:1755

    Article  CAS  Google Scholar 

  30. Yang H, Coombs N, Ozin GA (1998) J Mater Chem 8:1205

    Article  CAS  Google Scholar 

  31. Rose SJ, Patel HM, Lovell MR, Muir JE, Mann S (1988) Chem Commun 829

  32. Ruggles JL, Holt SA, Reynolds PA, Brown AS, Creagh DC, White JW (1999) Phys Chem Chem Phys 1:323

    Article  CAS  Google Scholar 

  33. Balkus KJ, Scott AS, Gimon-Kinsel ME, Blanco JH (2000) Microporous Mesoporous Mater 38:97

    Article  CAS  Google Scholar 

  34. Ogawa M, Kuroda K, Mori J (2002) Langmuir 18:744

    Google Scholar 

  35. Baskaran S, Liu J Domansky K, Kohler N, Li X, Coyle C, Eryxell GF, Thevuthasan S, Williford RE (2000) Adv Mater 12:291

    Article  CAS  Google Scholar 

  36. Nishiyama N, Loide A, Egashira Y, Ueyama K (1998) Chem Commun 2147

  37. Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913

    Article  CAS  PubMed  Google Scholar 

  38. Yang P, Wirnsberger G, Huang H, Cordero S, McGehee MD, Scott B, Deng T, Whitesides GM, Chmelka B, Buratto Sk, Stucky GD (2000) Science 287:465

    Article  CAS  PubMed  Google Scholar 

  39. Stein A, Melde BJ, Schroden RC (2000) Adv Mater 12:1403

    Article  CAS  Google Scholar 

  40. Ogawa M, Kuroda K, Mori J (2000) Studies in Surface Sci and Catal 149:865

    Google Scholar 

  41. Ogawa M, Kuroda K, Mori J (2000) Chem Commun 2441

  42. Stein A, Holland B (1996) J Porous Mater 3:83

    CAS  Google Scholar 

  43. Tuel A (1999) Microporous Mesoporous Mater 27:151

    Article  CAS  Google Scholar 

  44. Beck JS, Vartuli JC, Roth WL, Leonowicz ME, Kresge CT, Schmidt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    CAS  Google Scholar 

  45. Mokaya R (2000) Adv Mater 12:1681

    Article  CAS  Google Scholar 

  46. Ryoo R, Ko CH, Howe RF (1997) Chem Mater 9:1607

    Article  CAS  Google Scholar 

  47. Luan Z, Cheng C-F, He H, Klinowsky J (1995) J Phys Chem 99:10590

    CAS  Google Scholar 

  48. Weglarski J, Dakta J, He H, Klinowsky J (1996) J Chem Soc Faraday Trans 92:5161

    CAS  Google Scholar 

  49. Davis R J, Liu Z (1997) Chem Mater 9:2311

    Article  CAS  Google Scholar 

  50. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:321

    CAS  PubMed  Google Scholar 

  51. Zhang W, Fröba M, Wang J, Tanev PT, Wong J, Pinnavaia TJ (1996) J Am Chem Soc 118:9164

    Article  CAS  Google Scholar 

  52. Maschmeyer T, Rey F, Sankar G, Thomas J M (1995) Nature 378:159

    CAS  Google Scholar 

  53. Walker JV, Morey M, Carlsson H, Davidson A, Stucky GD, Butler A (1997) J Am Chem Soc 119:6921

    Article  CAS  Google Scholar 

  54. Corma A, Navarro MT, Pariente JP (1994) J Chem Soc, Chem Commun 147

  55. Corma A, Garcia H, Navarro MT, Palomares EJ, Rey F (2000) Chem Mater 12:3068

    Article  CAS  Google Scholar 

  56. Luan Z, Maes EM, ven der Heide PAW, Zhao WD, Czernuszewicz RS, Kevan, L (1999) Chem Mater 11:3680

    Article  CAS  Google Scholar 

  57. Walker JV, Morey M, Carlsson H, Davidson A, Stucky GD, Butler A (1997) J Am Chem Soc 119:6921

    Article  CAS  Google Scholar 

  58. Sung-Suh HM, Zhaohua L, Kevan L (1997) J Phys Chem B 101:10455

    Article  CAS  Google Scholar 

  59. Ikeue K, Yamashita H, Anpo M (1999) Chem Lett 113

  60. Zhang SG, Fujii Y, Yamashita H, Koyano K, Tatsumi T, Anpo M (1997) Chem Lett 659

  61. Yamashita H, Kawasaki S, Ichihashi Y, Harada M, Takeuchi M, Anpo M, Stewart G, Fox MA, Louis C, Che M (1998) J Phys Chem B 102:5870

    Article  CAS  Google Scholar 

  62. Pozamsky GA, McCormick AV (1995) J Non-Cryst Solids 190:212

    Google Scholar 

  63. Ogawa M, Ikeue K, Anpo M (2001) Chem Mater 13:2900

  64. Horváth G, Kawazoe KJ (1983) J Chem Eng Jpn 16:470

    Google Scholar 

  65. Ueda M, Kim H-B, Ichimura K (1994) Chem Mater 6:1771

    CAS  Google Scholar 

  66. Victor JG, Torkelson JM (1987) Macromolecules 20:2241

    CAS  Google Scholar 

  67. Mita I, Horie K, Hirao K (1989) Macromolecules 22:558

    CAS  Google Scholar 

  68. Ramamurthy V (1991) Photochemistry in organized and constrained media. VCH, New York

  69. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

  70. Dag O, Yoshina-Ishii C, Asefa T, MacLachlan MJ, Grondey H, Coombs N, Ozin GA (2001) Adv Functional Mater 11:213

    Article  CAS  Google Scholar 

  71. Fun H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, López GP, Brinker CJ (2000) Nature 405:56

    Article  PubMed  Google Scholar 

  72. Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) J Am Chem Soc 122:5258

    Article  CAS  Google Scholar 

  73. Trau M, Yao N, Kim E, Xia Y, Whitesides GM, Aksay IA (1997) Nature 390:674

    CAS  Google Scholar 

  74. Yang H, Coombs N, Ozin GA (1998) Adv Mater 9:811

    Google Scholar 

  75. Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K, Potter Jr BG, Hurd,A, Brinker CJ (2000) Science 290:107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Waseda University as a special research project. The author thanks Prof. M. Anpo and Mr. K. Ikeue (Department of Applied Chemistry, Osaka Prefecture University) and Mr. N. Masukawa and S. Nozaki (Department of Earth Sciences, Waseda University) for stimulating discussion and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, M. Nanoporous silica films containing aluminum and titanium. Colloid Polym Sci 281, 665–672 (2003). https://doi.org/10.1007/s00396-002-0818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-002-0818-5

Keywords

Navigation