Colloid and Polymer Science

, Volume 281, Issue 12, pp 1157–1171 | Cite as

How to understand nucleation in crystallizing polymer melts under real processing conditions

Original Contribution


As has been shown experimentally in our laboratory, the number of athermal nuclei, as found in unnucleated quiescent melts, increases tremendously with decreasing temperatures of crystallization, down to severe degrees of undercooling. One cannot assume that the presence of heterogeneous nuclei can explain this horrible temperature dependence. Moreover, one can conclude that the number fraction of macromolecules participating in these athermal nuclei is extremely low. Macroscopically, these nuclei seem to form a number of spots in a sea of homogeneous undercooled liquid.In the present paper the proposal is made that this number can be estimated from the probability of the occurrence of local molecular arrangements of varying quality, which preexist by accidence in a so-called living equilibrium in the stable melt, i.e. above the equilibrium melting point. During a rapid quench, realistic for processing conditions, these local arrangements are successively stabilized and serve as precursors for the start of crystallization. Dependent on their quality, this stabilization occurs over a broad range of crystallization temperatures. A selection rule for their effectiveness is derived from thermodynamics. In addition, reasons are discussed for the observed strong influence of flow on the formation of nuclei. From the "short-term" creep experiments, which are successful even at low degrees of undercooling, the impression has been obtained that during flow an unimaginable long-distance mechanical interaction becomes effective between the nuclei of crystallization. However, a more convincing explanation has been found recently: it is described at the end of this paper.


Polymers Crystallization Nuclei Counting Growth 


  1. 1.
    Janeschitz-Kriegl H, Ratajski E, Wippel H (1999) Colloid Polym Sci 277:217Google Scholar
  2. 2.
    Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Prog Polym Sci 15:629Google Scholar
  3. 3.
    Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) Int Polym Process 8:236Google Scholar
  4. 4.
    Eder G, Janeschitz-Kriegl H (1997) Mater Sci Technol 18:269Google Scholar
  5. 5.
    Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Rheol Acta 42:355Google Scholar
  6. 6.
    Ratajski E, Janeschitz-Kriegl H (1996) Colloid Polym Sci 274:938Google Scholar
  7. 7.
    Stadlbauer M, Eder G, Janeschitz-Kriegl H (2001) Polymer 42:3809Google Scholar
  8. 8.
    Janeschitz-Kriegl H (1997) Colloid Polym Sci 275:1121Google Scholar
  9. 9.
    Larson M A, Garside J (1986) J Cryst Growth 76:88Google Scholar
  10. 10.
    Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Phys Rev Lett 81:373Google Scholar
  11. 11.
    Terrill NJ, Fairclough PA, Town-Andrews E, Komanschek BU, Young RJ, Ryan AJ (1998) Polymer 39:2381Google Scholar
  12. 12.
    Long Y, Shanks RA, Stachurski ZH (1995) Prog Polym Sci 20:651Google Scholar
  13. 13.
    Gandican A, Magill JH (1972) Polymer 13:595Google Scholar
  14. 14.
    Van Krevelen DW (1978) Chimia 32:279Google Scholar
  15. 15.
    Van Krevelen DW (1990) Properties of polymers 3rd edn. Elsevier, Amsterdam, pp 112, 120, 592, 597Google Scholar
  16. 16.
    Avrami M (1940) J Chem Phys 8:212–24Google Scholar
  17. 17.
    Pogodina NV, Lavrenko V P, Srinivas S, Winter HH (2001) Polymer 42:9031Google Scholar
  18. 18.
    Marand H, Xu J, Srinivas S (1998) Macromolecules 31:8219Google Scholar
  19. 19.
    Keller A (1957) Philos Mag 2:1171Google Scholar
  20. 20.
    Strobl G (1996) The physics of polymers. Springer Berlin Heidelberg New York, p 166Google Scholar
  21. 21.
    Tolman RC (1949) J Chem Phys 17:331Google Scholar
  22. 22.
    Hoffman JD, Davis GT, Lauritzen JI (1976) In: Hannay NB (ed) Treatise on solid state chemistry. Plenum, New York, p 3:497Google Scholar
  23. 23.
    Smoluchowski M (1908) Ann Phys 25:205Google Scholar
  24. 24.
    Tribout C, Monasse B, Haudin J (1996) Colloid Polym Sci 274:197Google Scholar
  25. 25.
    Liedauer S, Eder G, Janeschitz-Kriegl H (1995) Int Polym Process 10:243Google Scholar
  26. 26.
    Jerschow P, Janeschitz-Kriegl H (1996) Rheol Acta 35:127Google Scholar
  27. 27.
    Jerschow P, Janeschitz-Kriegl H (1997) Int Polym Process 12:72Google Scholar
  28. 28.
    Kumaraswamy G, Verma R K, Kornfield JA (1999 )Rev Sci Instrum 70:2097Google Scholar
  29. 29.
    Keller A, Kolnaar HWH (1997) Mater Sci Technol 18:189Google Scholar
  30. 30.
    Monasse B (1995) J Mater Sci 30:5002Google Scholar
  31. 31.
    Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin Heidelberg New York, pp 143, 263Google Scholar
  32. 32.
    Eder G, Janeschitz-Kriegl H, Krobath G (1989) Prog Colloid Polym Sci 80:1Google Scholar
  33. 33.
    Monasse B, Haudin JM (1986) Colloid Polym Sci 264:117Google Scholar
  34. 34.
    Alfonso GG (1999) Polym Mater Sci Eng 81:330–31Google Scholar
  35. 35.
    Braun J, Wippel H, Eder G, Janeschitz-Kriegl H (2003) Polym Eng Sci 43:188Google Scholar
  36. 36.
    (a) Boon J, Challa G, Van Krevelen DW (1968) J Polym Sci A 2 6:1791; (b) Boon J, Challa G, Van Krevelen DW (1968) J Polym Sci A 2 6:1835CrossRefGoogle Scholar
  37. 37.
    Imai M, Kaji K, Kanaya T (1993) Phys Rev Lett 71:4162PubMedGoogle Scholar
  38. 38.
    Alfonso GC, Ziabicki A (1995) Colloid Polym Sci 273:317–23Google Scholar
  39. 39.
    Gahleitner M, Wolfschwenger J, Bachner C, Bernreitner K, Neißl W (1996) J Appl Polym Sci 61:649Google Scholar
  40. 40.
    Gahleitner M, Bachner C, Ratajski E, Rohaczek G, Neissl W (1999) J Appl Polym Sci 73:2507Google Scholar
  41. 41.
    Kumaraswamy G, Issian A M, Kornfield JA (1999) Macromolecules 32:7537CrossRefGoogle Scholar
  42. 42.
    Kumaraswamy G, Verma R K, Issian A M, Wang P, Kornfield J A, Yeh F, Hsiao B S, Olley R H Polymer (2001) 41:8931Google Scholar
  43. 43.
    Wunderlich B (1990) Thermal analysis. Academic, Boston, pp 32, 95Google Scholar
  44. 44.
    Piccarolo S, Saiu M, Brucato V, Titomanlio G (1992) J Appl Polym Sci 46:625CrossRefGoogle Scholar
  45. 45.
    Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford, p 270Google Scholar
  46. 46.
    Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford, p 204Google Scholar
  47. 47.
    Tsvetkov VN (1962) J Polym Sci 57:727Google Scholar
  48. 48.
    Pechhold WR, Gross T, Grossmann HP (1973) Kolloid Z 251:818Google Scholar
  49. 49.
    Wunderlich B (1972) Pure Appl Chem 31:49Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute of ChemistryJohannes Kepler UniversityLinzAustria

Personalised recommendations