Skip to main content
Log in

Identification of a mechanism promoting mitochondrial sterol accumulation during myocardial ischemia–reperfusion: role of TSPO and STAR

  • Mitochondria at the heart of cardioprotection
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia–reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia–reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4’-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia–reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia–reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4’-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia–reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4’-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia–reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available from the corresponding author on reasonable request.

Abbreviations

CYP:

Cytochrome P450

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

SOD2:

Superoxide dismutase 2

COX-IV:

Cytochrome C oxidase

TSPO:

Translocator protein

STAR:

Steroidogenic acute regulatory protein

mPTP:

Mitochondrial permeability transition pore

VDAC:

Voltage-dependent anion channel

ROS:

Reactive oxygen species

AUC:

Area under the curve

AOC:

Area over curve

References

  1. Andreadou I, Iliodromitis EK, Lazou A, Görbe A, Giricz Z, Schulz R, Ferdinandy P (2017) Effect of hypercholesterolaemia on myocardial function, ischaemia-reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 174:1555–1569. https://doi.org/10.1111/bph.13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anuka E, Yivgi-Ohana N, Eimerl S, Garfinkel B, Melamed-Book N, Chepurkol E, Aravot D, Zinman T, Shainberg A, Hochhauser E, Orly J (2013) Infarct-induced steroidogenic acute regulatory protein: a survival role in cardiac fibroblasts. Mol Endocrinol 27:1502–1517. https://doi.org/10.1210/me.2013-1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Artemenko IP, Zhao D, Hales DB, Hales KH, Jefcoate CR (2001) Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem 276:46583–46596. https://doi.org/10.1074/jbc.M107815200

    Article  CAS  PubMed  Google Scholar 

  4. Babiker A, Andersson O, Lund E, Xiu RJ, Deeb S, Reshef A, Leitersdorf E, Diczfalusy U, Björkhem I (1997) Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 272:26253–26261. https://doi.org/10.1074/jbc.272.42.26253

    Article  CAS  PubMed  Google Scholar 

  5. Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW, Quin C, Graeber MB, Parmar A, Zahra D, Callaghan P, Fok S, Howell NR, Gregoire M, Szabo A, Pham T, Davis E, Liu GJ (2014) Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat Commun 5:5452. https://doi.org/10.1038/ncomms6452

    Article  PubMed  Google Scholar 

  6. Bao N, Minatoguchi S, Kobayashi H, Yasuda S, Kawamura I, Iwasa M, Yamaki T, Sumi S, Misao Y, Arai M, Nishigaki K, Takemura G, Fujiwara T, Fujiwara H (2007) Pravastatin reduces myocardial infarct size via increasing protein kinase C-dependent nitric oxide, decreasing oxyradicals and opening the mitochondrial adenosine triphosphate-sensitive potassium channels in rabbits. Circ J 71:1622–1628. https://doi.org/10.1253/circj.71.1622

    Article  CAS  PubMed  Google Scholar 

  7. Barau C, Ghaleh B, Berdeaux A, Morin D (2015) Cytochrome P450 and myocardial ischemia: potential pharmacological implication for cardioprotection. Fundam Clin Pharmacol 29:1–9. https://doi.org/10.1111/fcp.12087

    Article  CAS  PubMed  Google Scholar 

  8. Batoko H, Veljanovski V, Jurkiewicz P (2015) Enigmatic Translocator protein (TSPO) and cellular stress regulation. Trends Biochem Sci 40:497–503. https://doi.org/10.1016/j.tibs.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M (2020) Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 24:2717–2729. https://doi.org/10.1111/jcmm.14953

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chang CW, Chiu CH, Lin MH, Wu HM, Yu TH, Wang PY, Kuo YY, Huang YY, Shiue CY, Huang WS, Yeh SH (2021) GMP-compliant fully automated radiosynthesis of [18F]FEPPA for PET/MRI imaging of regional brain TSPO expression. EJNMMI Res 11:26. https://doi.org/10.1186/s13550-021-00768-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen C, Kuo J, Wong A, Micevych P (2014) Estradiol modulates translocator protein (TSPO) and steroid acute regulatory protein (StAR) via protein kinase A (PKA) signaling in hypothalamic astrocytes. Endocrinology 155:2976–2985. https://doi.org/10.1210/en.2013-1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Ohmori K, Mizukawa M, Yoshida J, Zeng Y, Zhang L, Shinomiya K, Kosaka H, Kohno M (2007) Differential impact of atorvastatin vs pravastatin on progressive insulin resistance and left ventricular diastolic dysfunction in a rat model of type II diabetes. Circ J 71:144–152. https://doi.org/10.1253/circj.71.144

    Article  CAS  PubMed  Google Scholar 

  13. Chung YW, Lagranha C, Chen Y, Sun J, Tong G, Hockman SC, Ahmad F, Esfahani SG, Bae DH, Polidovitch N, Wu J, Rhee DK, Lee BS, Gucek M, Daniels MP, Brantner CA, Backx PH, Murphy E, Manganiello VC (2015) Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci USA 112:E2253–E2262. https://doi.org/10.1073/pnas.1416230112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Desai R, East DA, Hardy L, Faccenda D, Rigon M, Crosby J, Alvarez MS, Singh A, Mainenti M, Hussey LK, Bentham R, Szabadkai G, Zappulli V, Dhoot GK, Romano LE, Xia D, Coppens I, Hamacher-Brady A, Chapple JP, Abeti R, Fleck RA, Vizcay-Barrena G, Smith K, Campanella M (2020) Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. https://doi.org/10.1126/sciadv.abc9955

    Article  PubMed  Google Scholar 

  15. Egashira K, Ni W, Inoue S, Kataoka C, Kitamoto S, Koyanagi M, Takeshita A (2000) Pravastatin attenuates cardiovascular inflammatory and proliferative changes in a rat model of chronic inhibition of nitric oxide synthesis by its cholesterol-lowering independent actions. Hypertens Res 23:353–358. https://doi.org/10.1291/hypres.23.353

    Article  CAS  PubMed  Google Scholar 

  16. Fan J, Campioli E, Midzak A, Culty M, Papadopoulos V (2015) Conditional steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. Proc Natl Acad Sci USA 112:7261–7266. https://doi.org/10.1073/pnas.1502670112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Favre J, Gao J, Henry JP, Remy-Jouet I, Fourquaux I, Billon-Gales A, Thuillez C, Arnal JF, Lenfant F, Richard V (2010) Endothelial estrogen receptor alpha plays an essential role in the coronary and myocardial protective effects of estradiol in ischemia/reperfusion. Arterioscler Thromb Vasc Biol 30:2562–2567. https://doi.org/10.1161/ATVBAHA.110.213637

    Article  CAS  PubMed  Google Scholar 

  18. Fontaine D, Fontaine J, Dupont I, Dessy C, Piech A, Carpentier Y, Berkenboom G (2002) Chronic hydroxymethylglutaryl coenzyme a reductase inhibition and endothelial function of the normocholesterolemic rat: comparison with angiotensin-converting enzyme inhibition. J Cardiovasc Pharmacol 40:172–180. https://doi.org/10.1097/00005344-200208000-00002

    Article  CAS  PubMed  Google Scholar 

  19. Galano M, Li Y, Li L, Sottas C, Papadopoulos V (2021) Role of Constitutive STAR in Leydig Cells. Int J Mol Sci. https://doi.org/10.3390/ijms22042021

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gatliff J, East D, Crosby J, Abeti R, Harvey R, Craigen W, Parker P, Campanella M (2014) TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 10:2279–2296. https://doi.org/10.4161/15548627.2014.991665

    Article  CAS  PubMed  Google Scholar 

  21. Gatliff J, East DA, Singh A, Alvarez MS, Frison M, Matic I, Ferraina C, Sampson N, Turkheimer F, Campanella M (2017) A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis. https://doi.org/10.1038/cddis.2017.186

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gliozzi M, Scarano F, Musolino V, Carresi C, Scicchitano M, Ruga S, Zito MC, Nucera S, Bosco F, Maiuolo J, Macrì R, Guarnieri L, Mollace R, Coppoletta AR, Nicita C, Tavernese A, Palma E, Muscoli C, Mollace V (2020) Role of TSPO/VDAC1 Upregulation and Matrix Metalloproteinase-2 Localization in the Dysfunctional Myocardium of Hyperglycaemic Rats. Int J Mol Sci 21:7432. https://doi.org/10.3390/ijms21207432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gomez-Sanchez EP, Gomez-Sanchez CE (2021) 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2021.111210

    Article  PubMed  PubMed Central  Google Scholar 

  24. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:939–948. https://doi.org/10.1042/bj3070093

    Article  Google Scholar 

  25. Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141. https://doi.org/10.1016/j.yjmcc.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  26. Hans G, Wislet-Gendebien S, Lallemend F, Robe P, Rogister B, Belachew S, Nguyen L, Malgrange B, Moonen G, Rigo JM (2005) Peripheral benzodiazepine receptor (PBR) ligand cytotoxicity unrelated to PBR expression. Biochem Pharmacol 69:819–830. https://doi.org/10.1016/j.bcp.2004.11.029

    Article  CAS  PubMed  Google Scholar 

  27. Hauet T, Yao ZX, Bose HS, Wall CT, Han Z, Li W, Hales DB, Miller WL, Culty M, Papadopoulos V (2005) Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria. Mol Endocrinol 19:540–554. https://doi.org/10.1210/me.2004-0307

    Article  CAS  PubMed  Google Scholar 

  28. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  29. Heusch G (2024) Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. Med 5:10–31. https://doi.org/10.1016/j.medj.2023.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Walker KE, Hanley F, Narula J, Houser SR, Tulenko TN (2004) Cardiac systolic and diastolic dysfunction after a cholesterol-rich diet. Circulation 109:97–102. https://doi.org/10.1161/01.CIR.0000109213.10461.F6

    Article  CAS  PubMed  Google Scholar 

  31. Lecour S, Bøtker HE, Condorelli G, Davidson SM, Garcia-Dorado D, Engel FB, Ferdinandy P, Heusch G, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Sluijter JP, Van Laake LW, Yellon DM, Hausenloy DJ (2014) ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res 104:399–411. https://doi.org/10.1093/cvr/cvu225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leducq N, Bono F, Sulpice T, Vin V, Janiak P, Fur GL, O’Connor SE, Herbert JM (2003) Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion. J Pharmacol Exp Ther 306:828–837. https://doi.org/10.1124/jpet.103.052068

    Article  CAS  PubMed  Google Scholar 

  33. Lee TM, Chou TF, Tsai CH (2003) Effects of pravastatin on cardiomyocyte hypertrophy and ventricular vulnerability in normolipidemic rats after myocardial infarction. J Mol Cell Cardiol 35:1449–1459. https://doi.org/10.1016/j.yjmcc.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  34. Liu D, Wang Z, Nicolas V, Lindner M, Mika D, Vandecasteele G, Fischmeister R, Brenner C (2019) PDE2 regulates membrane potential, respiration and permeability transition of rodent subsarcolemmal cardiac mitochondria. Mitochondrion 47:64–75. https://doi.org/10.1016/j.mito.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  35. Marín-Royo G, Ortega-Hernández A, Martínez-Martínez E, Jurado-López R, Luaces M, Islas F, Gómez-Garre D, Delgado-Valero B, Lagunas E, Ramchandani B, García-Bouza M, Nieto ML, Cachofeiro V (2019) The Impact of Cardiac Lipotoxicity on Cardiac Function and Mirnas Signature in Obese and Non-Obese Rats with Myocardial Infarction. Sci Rep 9:444. https://doi.org/10.1038/s41598-018-36914-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCommis KS, McGee AM, Laughlin MH, Bowles DK, Baines CP (2011) Hypercholesterolemia increases mitochondrial oxidative stress and enhances the MPT response in the porcine myocardium: beneficial effects of chronic exercise. Am J Physiol Regul Integr Comp Physiol 301:R1250-1258. https://doi.org/10.1152/ajpregu.00841.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller WL (2013) Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol 379:62–73. https://doi.org/10.1016/j.mce.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  38. Morin D, Long R, Panel M, Laure L, Taranu A, Gueguen C, Pons S, Leoni V, Caccia C, Vatner SF, Vatner DE, Qiu H, Depre C, Berdeaux A, Ghaleh B (2019) Hsp22 overexpression induces myocardial hypertrophy, senescence and reduced life span through enhanced oxidative stress. Free Radic Biol Med 137:194–200. https://doi.org/10.1016/j.freeradbiomed.2019.04.035

    Article  CAS  PubMed  Google Scholar 

  39. Morin D, Musman J, Pons S, Berdeaux A, Ghaleh B (2016) Mitochondrial translocator protein (TSPO): From physiology to cardioprotection. Biochem Pharmacol 105:1–13. https://doi.org/10.1016/j.bcp.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  40. Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V (2014) Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology 155:89–97. https://doi.org/10.1210/en.2013-1556

    Article  CAS  PubMed  Google Scholar 

  41. Musman J, Paradis S, Panel M, Pons S, Barau C, Caccia C, Leoni V, Ghaleh B, Morin D (2017) A TSPO ligand prevents mitochondrial sterol accumulation and dysfunction during myocardial ischemia-reperfusion in hypercholesterolemic rats. Biochem Pharmacol 142:87–95. https://doi.org/10.1016/j.bcp.2017.06.125

    Article  CAS  PubMed  Google Scholar 

  42. Musman J, Pons S, Barau C, Caccia C, Leoni V, Berdeaux A, Ghaleh B, Morin D (2016) Regular treadmill exercise inhibits mitochondrial accumulation of cholesterol and oxysterols during myocardial ischemia-reperfusion in wild-type and ob/ob mice. Free Radic Biol Med 101:317–324. https://doi.org/10.1016/j.freeradbiomed.2016.10.496

    Article  CAS  PubMed  Google Scholar 

  43. Neil A, Cooper J, Betteridge J, Capps N, McDowell I, Durrington P, Seed M, Humphries SE (2008) Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J 29:2625–2633. https://doi.org/10.1093/eurheartj/ehn422

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DR, Papadopoulos V, Tournier BB (2021) Cellular sources of TSPO expression in healthy and diseased brain. Eur J Nucl Med Mol Imaging 49:146–163. https://doi.org/10.1007/s00259-020-05166-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Obame FN, Zini R, Souktani R, Berdeaux A, Morin D (2007) Peripheral benzodiazepine receptor-induced myocardial protection is mediated by inhibition of mitochondrial membrane permeabilization. J Pharmacol Exp Ther 323:336–345. https://doi.org/10.1124/jpet.107.124255

    Article  CAS  PubMed  Google Scholar 

  46. Onody A, Csonka C, Giricz Z, Ferdinandy P (2003) Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts. Cardiovasc Res 58:663–670. https://doi.org/10.1016/s0008-6363(03)00330-4

    Article  CAS  PubMed  Google Scholar 

  47. Osipov RM, Bianchi C, Feng J, Clements RT, Liu Y, Robich MP, Glazer HP, Sodha NR, Sellke FW (2009) Effect of hypercholesterolemia on myocardial necrosis and apoptosis in the setting of ischemia-reperfusion. Circulation 120:S22-30. https://doi.org/10.1161/CIRCULATIONAHA.108.842724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Owen DR, Fan J, Campioli E, Venugopal S, Midzak A, Daly E, Harlay A, Issop L, Libri V, Kalogiannopoulou D, Oliver E, Gallego-Colon E, Colasanti A, Huson L, Rabiner EA, Suppiah P, Essagian C, Matthews PM, Papadopoulos V (2017) TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J 474:3985–3999. https://doi.org/10.1042/BCJ20170648

    Article  CAS  PubMed  Google Scholar 

  49. Papadopoulos V (2014) On the role of the translocator protein (18-kDa) TSPO in steroid hormone biosynthesis. Endocrinology 155:15–20. https://doi.org/10.1210/en.2013-2033

    Article  CAS  PubMed  Google Scholar 

  50. Papadopoulos V, Aghazadeh Y, Fan F, Campioli E, Zirkin B, Midzak A (2015) Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol 408:90–98. https://doi.org/10.1016/j.mce.2015.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paradis S, Leoni V, Caccia C, Berdeaux A, Morin D (2013) Cardioprotection by the TSPO ligand 4’-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res 98:420–427. https://doi.org/10.1093/cvr/cvt079

    Article  CAS  PubMed  Google Scholar 

  52. Penumathsa SV, Thirunavukkarasu M, Koneru S, Juhasz B, Zhan L, Pant R, Menon VP, Otani H, Maulik N (2007) Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J Mol Cell Cardiol 42:508–516. https://doi.org/10.1016/j.yjmcc.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  53. Pitasi CL, Liu J, Gausserès B, Pommier G, Delangre E, Armanet M, Cattan P, Mégarbane B, Hanak AS, Maouche K, Bailbé D, Portha B, Movassat J (2020) Implication of glycogen synthase kinase 3 in diabetes-associated islet inflammation. J Endocrinol 244:133–148. https://doi.org/10.1530/JOE-19-0239

    Article  CAS  PubMed  Google Scholar 

  54. Raal FJ, Pilcher GJ, Panz VR, van Deventer HE, Brice BC, Blom DJ, Marais AD (2011) Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation 124:2202–2207. https://doi.org/10.1161/CIRCULATIONAHA.111.042523

    Article  CAS  PubMed  Google Scholar 

  55. Reed GW, Rossi JE, Cannon CP (2017) Acute myocardial infarction. Lancet 389:197–210. https://doi.org/10.1016/S0140-6736(16)30677-8

    Article  PubMed  Google Scholar 

  56. Rojas S, Martín A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, Llop J, Gómez V, Gispert JD, Millán O, Chamorro A, Planas AM (2007) Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 27:1975–1986. https://doi.org/10.1038/sj.jcbfm.9600500

    Article  CAS  PubMed  Google Scholar 

  57. Rone MB, Fan J, Papadopoulos V (2009) Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta 1791:646–658. https://doi.org/10.1016/j.bbalip.2009.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schaller S, Paradis S, Ngoh GA, Assaly R, Buisson B, Drouot C, Ostuni MA, Lacapere JJ, Bassissi F, Bordet T, Berdeaux A, Jones SP, Morin D, Pruss RM (2010) TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition. J Pharmacol Exp Ther 333:696–706. https://doi.org/10.1124/jpet.110.167486

    Article  CAS  PubMed  Google Scholar 

  59. Šileikytė J, Blachly-Dyson E, Sewell R, Carpi A, Menabò R, Di Lisa F, Ricchelli F, Bernardi P, Forte M (2014) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)). J Biol Chem 1289:13769–13781. https://doi.org/10.1074/jbc.M114.549634

    Article  CAS  Google Scholar 

  60. Sniderman AD, Tsimikas S, Fazio S (2014) The severe hypercholesterolemia phenotype: clinical diagnosis, management, and emerging therapies. J Am Coll Cardiol 63:1935–1947. https://doi.org/10.1016/j.jacc.2014.01.060

    Article  CAS  PubMed  Google Scholar 

  61. Tian H, Zhao X, Zhang Y, Xia Z (2023) Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 163:114827. https://doi.org/10.1016/j.biopha.2023.114827

    Article  CAS  PubMed  Google Scholar 

  62. Tu LN, Morohaku K, Manna PR, Pelton SH, Butler WR, Stocco DM, Selvaraj V (2014) Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem 289:27444–27454. https://doi.org/10.1074/jbc.M114.578286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tu LN, Zhao AH, Stocco DM, Selvaraj V (2015) PK11195 effect on steroidogenesis is not mediated through the translocator protein (TSPO). Endocrinology 156:1033–1039. https://doi.org/10.1210/en.2014-1707

    Article  CAS  PubMed  Google Scholar 

  64. Varga ZV, Kupai K, Szűcs G, Gáspár R, Pálóczi J, Faragó N, Zvara A, Puskás LG, Rázga Z, Tiszlavicz L, Bencsik P, Görbe A, Csonka C, Ferdinandy P, Csont T (2013) MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 62:111–121. https://doi.org/10.1016/j.yjmcc.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  65. Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G (2021) Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2021.105870

    Article  PubMed  PubMed Central  Google Scholar 

  66. Walker BR, Yau JL, Brett LP, Seckl JR, Monder C, Williams BC, Edwards CR (1991) 11 beta-hydroxysteroid dehydrogenase in vascular smooth muscle and heart: implications for cardiovascular responses to glucocorticoids. Endocrinology 129:3305–3312. https://doi.org/10.1210/endo-129-6-3305

    Article  CAS  PubMed  Google Scholar 

  67. Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD (2017) Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 292:16804–16809. https://doi.org/10.1074/jbc.R117.789271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Young MJ, Clyne CD, Cole TJ, Funder JW (2001) Cardiac steroidogenesis in the normal and failing heart. J Clin Endocrinol Metab 86:5121–5126. https://doi.org/10.1210/jcem.86.11.7925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Pr V Papadopoulos (University of Southern California, USA) for providing two pairs of heterozyte TSPO deleted rats, which allowed us to develop a colony. The authors also thank him for helpful advices concerning the synthesis and the use of the fluorescent probe cholesterol-resorufin and for rereading the manuscript. The authors are greatly indebted to the Plateforme de Biochimie du Centre de Recherche sur l’Inflammation (Hopital Bichat, Paris, France) for blood analyses. The authors thank the Imagery platform of IMRB for histological samples preparation and the Animal Facility of IMRB for animal care. The authors also thank Lucien Sambin and Alain Bizé for their help during echocardiographic exams.

Funding

This work was supported by the Fondation de France [Grant No. 2018-00086493]. Juliette Bréhat and Julien Musman were supported by doctoral grants from the Ministère de l’enseignement Supérieur, de la Recherche et de l’Innovation [Grant No. 2013-141, 2018-057].

Author information

Authors and Affiliations

Authors

Contributions

VL, MR, SP, BG, and DM contributed to the experimental design; JB, SL, JM, JBS, NE, FG, LAB, CT, FV, CC, and DM conducted the experiments; JB, SL, JM, SP, and DM performed data analysis; SP, BG and DM wrote or contributed to the writing of the manuscript with input from all co-authors. All authors have read and approved the content, and agreed to submit for consideration for publication in the journal.

Corresponding author

Correspondence to Didier Morin.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

All animal procedures used in this study were conformed to the Directives of the European Parliament (2010/63/EU-848 EEC). The experimental protocols were reviewed and approved (APAFIS13504#-201820130912402v3 and APAFIS#23908–2020012712028279 v4) by the local Ethic Committee Cometh (Afssa/ENVA/UPEC, N° 16).

Additional information

This article is part of the special issue "Mitochondria at the heart of cardioprotection".

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bréhat, J., Leick, S., Musman, J. et al. Identification of a mechanism promoting mitochondrial sterol accumulation during myocardial ischemia–reperfusion: role of TSPO and STAR. Basic Res Cardiol (2024). https://doi.org/10.1007/s00395-024-01043-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-024-01043-3

Keywords

Navigation