Skip to main content

Deficiency of mitochondrial calcium uniporter abrogates iron overload-induced cardiac dysfunction by reducing ferroptosis

Abstract

Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and supplementary materials. Raw data can be made available on reasonable request.

Abbreviations

ECG:

Electrocardiography

ECHO:

Echocardiography

Fer-1:

Ferrostatin-1

GPX4:

Glutathione peroxidase 4

LVEF:

Left ventricular ejection fraction

LVFS:

Left ventricular fractional shortening

LV:

Left ventricle

MCU:

Mitochondrial calcium uniporter

OCR:

Oxygen consumption rate

SRC:

Spare respiratory capacity

References

  1. Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T (2018) Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 314:H659–H668. https://doi.org/10.1152/ajpheart.00452.2017

    Article  CAS  PubMed  Google Scholar 

  2. Banjac A, Perisic T, Sato H, Seiler A, Bannai S, Weiss N, Kolle P, Tschoep K, Issels RD, Daniel PT, Conrad M, Bornkamm GW (2008) The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27:1618–1628. https://doi.org/10.1038/sj.onc.1210796

    Article  CAS  PubMed  Google Scholar 

  3. Bersuker K, Hendricks JM, Li ZP, Magtanong L, Ford B, Tang PH, Roberts MA, Tong BQ, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692. https://doi.org/10.1038/s41586-019-1705-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown DA, O’Rourke B (2010) Cardiac mitochondria and arrhythmias. Cardiovasc Res 88:241–249. https://doi.org/10.1093/cvr/cvq231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SV, Ardehali H (2016) Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 8:247–267. https://doi.org/10.15252/emmm.201505748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen C, Paw BH (2012) Cellular and mitochondrial iron homeostasis in vertebrates. Biochim Biophys Acta 1823:1459–1467. https://doi.org/10.1016/j.bbamcr.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen D, Chu B, Yang X, Liu Z, Jin Y, Kon N, Rabadan R, Jiang X, Stockwell BR, Gu W (2021) iPLA2beta-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 12:3644. https://doi.org/10.1038/s41467-021-23902-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cibulsky SM, Sather WA (1999) Block by ruthenium red of cloned neuronal voltage-gated calcium channels. J Pharmacol Exp Ther 289:1447–1453

    CAS  PubMed  Google Scholar 

  9. Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z, Oudit GY (2017) Females are protected from iron-overload cardiomyopathy independent of iron metabolism: key role of oxidative stress. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.003456

    Article  PubMed  PubMed Central  Google Scholar 

  10. Das SK, Wang W, Zhabyeyev P, Basu R, McLean B, Fan D, Parajuli N, DesAulniers J, Patel VB, Hajjar RJ, Dyck JR, Kassiri Z, Oudit GY (2015) Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy. Sci Rep 5:18132. https://doi.org/10.1038/srep18132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. https://doi.org/10.1038/nature10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demougeot C, Van Hoecke M, Bertrand N, Prigent-Tessier A, Mossiat C, Beley A, Marie C (2004) Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2′-dipyridyl in the rat photothrombotic ischemic stroke model. J Pharmacol Exp Ther 311:1080–1087. https://doi.org/10.1124/jpet.104.072744

    Article  CAS  PubMed  Google Scholar 

  13. Dietz JV, Fox JL, Khalimonchuk O (2021) Down the iron path: mitochondrial iron homeostasis and beyond. Cells 10:2198. https://doi.org/10.3390/cells10092198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:285–296. https://doi.org/10.1016/s1535-6108(03)00050-3

    Article  CAS  PubMed  Google Scholar 

  16. Fang S, Yu X, Ding H, Han J, Feng J (2018) Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Biochem Biophys Res Commun 503:297–303. https://doi.org/10.1016/j.bbrc.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  17. Fang X, Ardehali H, Min J, Wang F (2022) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. https://doi.org/10.1038/s41569-022-00735-410.1038/s41569-022-00735-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q, An P, Huang S, Pan J, Chen HZ, Chen J, Linkermann A, Min J, Wang F (2020) Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 127:486–501. https://doi.org/10.1161/CIRCRESAHA.120.316509

    Article  CAS  PubMed  Google Scholar 

  19. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, Cheng Q, Zhang P, Dai W, Chen J, Yang F, Yang HT, Linkermann A, Gu W, Min J, Wang F (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1821022116

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fefelova N, Wongjaikam S, Siri-Angkul N, Gwathmey JK, Chattipakorn N, Chattipakorn S, Xie LH (2020) Deficiency of mitochondrial calcium uniporter protects mouse hearts from iron overload by attenuating ferroptosis. Circulation 142:A15737

    Article  Google Scholar 

  21. Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2006203. https://doi.org/10.1371/journal.pbio.2006203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forcina GC, Dixon SJ (2019) GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 19:e1800311. https://doi.org/10.1002/pmic.201800311

    Article  CAS  PubMed  Google Scholar 

  23. Garbincius JF, Luongo TS, Elrod JW (2020) The debate continues—what is the role of MCU and mitochondrial calcium uptake in the heart? J Mol Cell Cardiol 143:163–174. https://doi.org/10.1016/j.yjmcc.2020.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garg V, Suzuki J, Paranjpe I, Unsulangi T, Boyman L, Milescu LS, Lederer WJ, Kirichok Y (2021) The mechanism of MICU-dependent gating of the mitochondrial Ca(2+)uniporter. Elife. https://doi.org/10.7554/eLife.69312

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gordan R, Fefelova N, Gwathmey JK, Xie LH (2020) Iron overload, oxidative stress and calcium mishandling in cardiomyocytes: role of the mitochondrial permeability transition pore. Antioxidants (Basel). https://doi.org/10.3390/antiox9080758

    Article  PubMed  Google Scholar 

  26. Gordan R, Wongjaikam S, Fefelova N, Siri-Angkul N, Gwathmey JK, Chattipakorn N, Chattipakorn S, Xie LH (2018) Mitochondrial permeability transition pore, calcium uniporter, and iron overload in the heart. Circ Res 123:A254

    Article  Google Scholar 

  27. Gordan R, Wongjaikam S, Gwathmey JK, Chattipakorn N, Chattipakorn SC, Xie LH (2018) Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev 23:801–816. https://doi.org/10.1007/s10741-018-9700-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y (2010) Iron overload cardiomyopathy: better understanding of an increasing disorder. J Am Coll Cardiol 56:1001–1012. https://doi.org/10.1016/j.jacc.2010.03.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gwathmey JK, Hajjar RJ (1990) Intracellular calcium related to force development in twitch contraction of mammalian myocardium. Cell Calcium 11:531–538. https://doi.org/10.1016/0143-4160(90)90029-T

    Article  CAS  PubMed  Google Scholar 

  30. Gwathmey JK, Hajjar RJ (1990) Relation between steady-state force and intracellular [Ca2+] in intact human myocardium—index of myofibrillar responsiveness to Ca2+. Circulation 82:1266–1278

    Article  CAS  PubMed  Google Scholar 

  31. Hadian K, Stockwell BR (2020) SnapShot: ferroptosis. Cell 181:1188-1188 e1181. https://doi.org/10.1016/j.cell.2020.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hajjar RJ, Gwathmey JK (1990) Direct evidence of changes in myofilament responsiveness to Ca2+ during hypoxia and reoxygenation in myocardium. Am J Physiol 259:H784–H795

    CAS  PubMed  Google Scholar 

  33. Hershko C (2006) Oral iron chelators: new opportunities and new dilemmas. Haematologica 91:1307–1312

    CAS  PubMed  Google Scholar 

  34. Hirschhorn T, Stockwell BR (2019) The development of the concept of ferroptosis. Free Radic Biol Med 133:130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043

    Article  CAS  PubMed  Google Scholar 

  35. Hu JT, Kholmukhamedov A, Lindsey CC, Beeson CC, Jaeschke H, Lemasters JJ (2016) Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: protection by starch-desferal and minocycline. Free Radic Biol Med 97:418–426. https://doi.org/10.1016/j.freeradbiomed.2016.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hung HI, Schwartz JM, Maldonado EN, Lemasters JJ, Nieminen AL (2013) Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy. J Biol Chem 288:677–686. https://doi.org/10.1074/jbc.M112.422667

    Article  CAS  PubMed  Google Scholar 

  37. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124:617–630. https://doi.org/10.1172/JCI72931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kajarabille N, Latunde-Dada GO (2019) Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci. https://doi.org/10.3390/ijms20194968

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kamer KJ, Mootha VK (2015) The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16:545–553. https://doi.org/10.1038/nrm4039

    Article  CAS  PubMed  Google Scholar 

  41. Kim NH, Kang PM (2010) Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J 40:299–305. https://doi.org/10.4070/kcj.2010.40.7.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kremastinos DT, Farmakis D (2011) Iron overload cardiomyopathy in clinical practice. Circulation 124:2253–2263. https://doi.org/10.1161/circulationaha.111.050773

    Article  PubMed  Google Scholar 

  43. Kumfu S, Chattipakorn S, Fucharoen S, Chattipakorn N (2012) Mitochondrial calcium uniporter blocker prevents cardiac mitochondrial dysfunction induced by iron overload in thalassemic mice. Biometals 25:1167–1175. https://doi.org/10.1007/s10534-012-9579-x

    Article  CAS  PubMed  Google Scholar 

  44. Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, York AJ, Zhang J, Bers DM, Molkentin JD (2015) The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep 12:15–22. https://doi.org/10.1016/j.celrep.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kyrychenko V, Polakova E, Janicek R, Shirokova N (2015) Mitochondrial dysfunctions during progression of dystrophic cardiomyopathy. Cell Calcium 58:186–195. https://doi.org/10.1016/j.ceca.2015.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS (1996) Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res 78:893–902

    Article  CAS  PubMed  Google Scholar 

  47. Lillo-Moya J, Rojas-Sole C, Munoz-Salamanca D, Panieri E, Saso L, Rodrigo R (2021) Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants (Basel). https://doi.org/10.3390/antiox10050667

    Article  PubMed  Google Scholar 

  48. Liu JC (2020) Is MCU dispensable for normal heart function? J Mol Cell Cardiol 143:175–183. https://doi.org/10.1016/j.yjmcc.2020.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P, Song J, Shanmughapriya S, Gao E, Jain M, Houser SR, Koch WJ, Cheung JY, Madesh M, Elrod JW (2015) The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep 12:23–34. https://doi.org/10.1016/j.celrep.2015.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MacKinnon R, Gwathmey JK, Morgan JP (1987) Differential effects of reoxygenation on intracellular calcium and isometric tension. Pflugers Arch 409:448–453. https://doi.org/10.1007/BF00583800

    Article  CAS  PubMed  Google Scholar 

  51. Monteith AJ, Miller JM, Beavers WN, Maloney KN, Seifert EL, Hajnoczky G, Skaar EP (2022) Mitochondrial calcium uniporter affects neutrophil bactericidal activity during Staphylococcus aureus infection. Infect Immun 90:e0055121. https://doi.org/10.1128/IAI.00551-21

    Article  PubMed  Google Scholar 

  52. Murphy CJ, Oudit GY (2010) Iron-overload cardiomyopathy: pathophysiology, diagnosis, and treatment. J Card Fail 16:888–900. https://doi.org/10.1016/j.cardfail.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  53. Nieminen AL, Schwartz J, Hung HI, Blocker ER, Gooz M, Lemasters JJ (2014) Mitoferrin-2 (MFRN2) regulates the electrogenic mitochondrial calcium uniporter and interacts physically with MCU. Biophys J 106:581a

    Article  Google Scholar 

  54. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15:1464–1472. https://doi.org/10.1038/ncb2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petrat F, Rauen U, de Groot H (1999) Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK. Hepatology 29:1171–1179. https://doi.org/10.1002/hep.510290435

    Article  CAS  PubMed  Google Scholar 

  56. Porter JB, Rafique R, Srichairatanakool S, Davis BA, Shah FT, Hair T, Evans P (2005) Recent insights into interactions of deferoxamine with cellular and plasma iron pools: implications for clinical use. Ann N Y Acad Sci 1054:155–168. https://doi.org/10.1196/annals.1345.018

    Article  CAS  PubMed  Google Scholar 

  57. Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ, Wiesner U, Bradbury MS, Niethammer P, Zaritsky A, Overholtzer M (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 22:1042. https://doi.org/10.1038/s41556-020-0565-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rose RA, Sellan M, Simpson JA, Izaddoustdar F, Cifelli C, Panama BK, Davis M, Zhao D, Markhani M, Murphy GG, Striessnig J, Liu PP, Heximer SP, Backx PH (2011) Iron overload decreases CaV1.3-dependent L-type Ca2+ currents leading to bradycardia, altered electrical conduction, and atrial fibrillation. Circ Arrhythm Electrophysiol 4:733–742. https://doi.org/10.1161/CIRCEP.110.960401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Radmark O, Wurst W, Bornkamm GW, Schweizer U, Conrad M (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248. https://doi.org/10.1016/j.cmet.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  60. Silva B, Faustino P (2015) An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta 1852:1347–1359. https://doi.org/10.1016/j.bbadis.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  61. Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye A, Xie LH, Gwathmey J (2021) Calcium and heart failure: how did we get here and where are we going? Int J Mol Sci 22:7392. https://doi.org/10.3390/Ijms22147392

    Article  PubMed  PubMed Central  Google Scholar 

  62. Siri-Angkul N, Song Z, Fefelova N, Gwathmey JK, Chattipakorn SC, Qu Z, Chattipakorn N, Xie LH (2021) Activation of TRPC (transient receptor potential canonical) channel currents in iron overloaded cardiac myocytes. Circ Arrhythm Electrophysiol 14:e009291. https://doi.org/10.1161/CIRCEP.120.009291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sripetchwandee J, KenKnight SB, Sanit J, Chattipakorn S, Chattipakorn N (2014) Blockade of mitochondrial calcium uniporter prevents cardiac mitochondrial dysfunction caused by iron overload. Acta Physiol (Oxf) 210:330–341. https://doi.org/10.1111/apha.12162

    Article  CAS  PubMed  Google Scholar 

  64. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185:2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  Google Scholar 

  65. Sumneang N, Siri-Angkul N, Kumfu S, Chattipakorn SC, Chattipakorn N (2020) The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch Biochem Biophys 680:108241. https://doi.org/10.1016/j.abb.2019.108241

    Article  CAS  PubMed  Google Scholar 

  66. Uchiyama A, Kim JS, Kon K, Jaeschke H, Ikejima K, Watanabe S, Lemasters JJ (2008) Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 48:1644–1654. https://doi.org/10.1002/hep.22498

    Article  CAS  PubMed  Google Scholar 

  67. van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67:21–29. https://doi.org/10.1016/j.cardiores.2005.04.012

    Article  CAS  PubMed  Google Scholar 

  68. Woods JJ, Wilson JJ (2020) Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol 55:9–18. https://doi.org/10.1016/j.cbpa.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  69. Xie LH, Fefelova N, Pamarthi SH, Gwathmey JK (2022) Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells 11:2726. https://doi.org/10.3390/cells11172726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamanaka K, Saito Y, Sakiyama J, Ohuchi Y, Oseto F, Noguchi N (2012) A novel fluorescent probe with high sensitivity and selective detection of lipid hydroperoxides in cells. Rsc Adv 2:7894–7900. https://doi.org/10.1039/c2ra20816d

    Article  CAS  Google Scholar 

  71. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao Z, Gordan R, Wen H, Fefelova N, Zang WJ, Xie LH (2013) Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes. PLoS One 8:e80574. https://doi.org/10.1371/journal.pone.0080574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Jeffery Molkentin for kindly providing the MCUfl/fl and MCUfl/fl-MCM breeding pairs.

Funding

This work was supported by the National Institutes of Health (R01s HL157116 to LHX and JKG and HL133294 to LHX), the American Heart Association (19TPA34900003 to LHX and JKG), and the National Science and Technology Development Agency Thailand (to NC), the National Research Council of Thailand (N42A660301 to SCC), the Thailand Research Fund-Royal Golden Jubilee Program (to SW and NC), and the Prince Mahidol Award Foundation (to NS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Hua Xie.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

This article is part of the topical collection “Mitochondria at the heart of cardioprotection”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1301 KB)

Supplementary file2 (DOCX 89 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fefelova, N., Wongjaikam, S., Pamarthi, S.H. et al. Deficiency of mitochondrial calcium uniporter abrogates iron overload-induced cardiac dysfunction by reducing ferroptosis. Basic Res Cardiol 118, 21 (2023). https://doi.org/10.1007/s00395-023-00990-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-023-00990-7

Keywords