Ajijola OA, Hoover DB, Simerly TM, Brown TC, Yanagawa J, Biniwale RM, Lee JM, Sadeghi A, Khanlou N, Ardell JL, Shivkumar K (2017) Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI insight. https://doi.org/10.1172/jci.insight.94715
Article
PubMed
PubMed Central
Google Scholar
Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K (2010) Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation 121:2255–2262. https://doi.org/10.1161/CIRCULATIONAHA.109.929703
Article
PubMed
PubMed Central
Google Scholar
Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sanchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20:1172–1179. https://doi.org/10.1038/nn.4593
CAS
Article
PubMed
PubMed Central
Google Scholar
Cui X, Jing J, Wu R, Cao Q, Li F, Li K, Wang S, Yu L, Schwartz G, Shi H, Xue B, Shi H (2021) Adipose tissue-derived neurotrophic factor 3 regulates sympathetic innervation and thermogenesis in adipose tissue. Nat Commun 12:5362. https://doi.org/10.1038/s41467-02125766-2
CAS
Article
PubMed
PubMed Central
Google Scholar
D’Alonzo AJ, Hess TA, Darbenzio RB, Sewter JC, Conder ML, McCullough JR (1994) Effects of cromakalim or pinacidil on pacing- and ischemia-induced ventricular fibrillation in the anesthetized pig. Basic Res Cardiol 89:163–176. https://doi.org/10.1007/BF00788735
CAS
Article
PubMed
Google Scholar
Dahlstrom M, Madjid N, Nordvall G, Halldin MM, Vazquez-Juarez E, Lindskog M, Sandin J, Winblad B, Eriksdotter M, Forsell P (2021) Identification of novel positive allosteric modulators of neurotrophin receptors for the treatment of cognitive dysfunction. Cells 10(8):1871. https://doi.org/10.3390/cells10081871
CAS
Article
PubMed
PubMed Central
Google Scholar
Davis H, Herring N, Paterson DJ (2020) Downregulation of M current is coupled to membrane excitability in sympathetic neurons before the onset of hypertension. Hypertension 76:1915–1923. https://doi.org/10.1161/HYPERTENSIONAHA.120.15922
CAS
Article
PubMed
Google Scholar
Diaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R (2020) Neuroinflammation in heart failure: new insights for an old disease. J Physiol 598:33–59. https://doi.org/10.1113/JP278864
CAS
Article
PubMed
Google Scholar
Dusi V, De Ferrari GM, Schwartz PJ (2020) There are 100 ways by which the sympathetic nervous system can trigger life-threatening arrhythmias. Eur Heart J 41:2180–2182. https://doi.org/10.1093/eurheartj/ehz950
Article
PubMed
Google Scholar
Garan H, Fallon JT, Ruskin JN (1980) Sustained ventricular tachycardia in recent canine myocardial infarction. Circulation 62:980–987. https://doi.org/10.1161/01.cir.62.5.980
CAS
Article
PubMed
Google Scholar
Goldberger JJ, Arora R, Buckley U, Shivkumar K (2019) Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol 73:1189–1206. https://doi.org/10.1016/j.jacc.2018.12.064
Article
PubMed
PubMed Central
Google Scholar
Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, March K, Lin SF, Shen C, Fishbein MC, Chen PS, Chen LS (2012) Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol 59:954–961. https://doi.org/10.1016/j.jacc.2011.11.030
Article
PubMed
PubMed Central
Google Scholar
Hansen CS, Vistisen D, Jorgensen ME, Witte DR, Brunner EJ, Tabak AG, Kivimaki M, Roden M, Malik M, Herder C (2017) Adiponectin, biomarkers of inflammation and changes in cardiac autonomic function: Whitehall II study. Cardiovasc Diabetol 16:153. https://doi.org/10.1186/s12933-017-0634-3
Article
PubMed
PubMed Central
Google Scholar
Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG (2006) Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 1124:142–154. https://doi.org/10.1016/j.brainres.2006.09.054
CAS
Article
PubMed
PubMed Central
Google Scholar
Herring N, Kalla M, Paterson DJ (2019) The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 16:707–726. https://doi.org/10.1038/s41569-019-0221-2
Article
PubMed
Google Scholar
Herring N, Tapoulal N, Kalla M, Ye X, Borysova L, Lee R, Dall’Armellina E, Stanley C, Ascione R, Lu CJ, Banning AP, Choudhury RP, Neubauer S, Dora K, Kharbanda RK, Channon KM, Oxford Acute Myocardial Infarction S (2019) Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur Heart J 40:1920–1929. https://doi.org/10.1093/eurheartj/ehz115
CAS
Article
PubMed
PubMed Central
Google Scholar
Heusch G, Deussen A, Thamer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst 13:311–326. https://doi.org/10.1016/01651838(85)90020-7
CAS
Article
PubMed
Google Scholar
Hinterdobler J, Schott S, Jin H, Meesmann A, Steinsiek AL, Zimmermann AS, Wobst J, Muller P, Mauersberger C, Vilne B, Baecklund A, Chen CS, Moggio A, Braster Q, Molitor M, Krane M, Kempf WE, Ladwig KH, Hristov M, Hulsmans M, Hilgendorf I, Weber C, Wenzel P, Scheiermann C, Maegdefessel L, Soehnlein O, Libby P, Nahrendorf M, Schunkert H, Kessler T, Sager HB (2021) Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. Eur Heart J 42:4077–4088. https://doi.org/10.1093/eurheartj/ehab371
CAS
Article
PubMed
PubMed Central
Google Scholar
Hoang JD, Salavatian S, Yamaguchi N, Swid MA, David H, Vaseghi M (2020) Cardiac sympathetic activation circumvents high-dose beta blocker therapy in part through release of neuropeptide Y. JCI insight. https://doi.org/10.1172/jci.insight.135519
Article
PubMed
PubMed Central
Google Scholar
Hoyda TD, Ferguson AV (2010) Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents. Endocrinology 151:3154–3162. https://doi.org/10.1210/en.2009-1390
CAS
Article
PubMed
Google Scholar
Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, Abduljawad N, Kliper E, Korczyn AD, Thareja NS, Kesner EL, Zhou M, Huang S, Silva TK, Katz N, Bornstein NM, Silva AJ, Shohami E, Carmichael ST (2019) CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(1143–1157):e1113. https://doi.org/10.1016/j.cell.2019.01.044
CAS
Article
Google Scholar
Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, DePinho RA, Guo XE, Mann JJ, Karsenty G (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915. https://doi.org/10.1016/j.cmet.2013.04.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Kalla M, Hao G, Tapoulal N, Tomek J, Liu K, Woodward L, Oxford Acute Myocardial Infarction S, Dall’Armellina E, Banning AP, Choudhury RP, Neubauer S, Kharbanda RK, Channon KM, Ajijola OA, Shivkumar K, Paterson DJ, Herring N (2020) The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade. Eur Heart J 41:2168–2179. https://doi.org/10.1093/eurheartj/ehz852
CAS
Article
PubMed
Google Scholar
Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, Yan N, Guo Z, Francis J (2009) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746. https://doi.org/10.1093/cvr/cvp160
CAS
Article
PubMed
PubMed Central
Google Scholar
Kojima S, Funahashi T, Sakamoto T, Miyamoto S, Soejima H, Hokamaki J, Kajiwara I, Sugiyama S, Yoshimura M, Fujimoto K, Miyao Y, Suefuji H, Kitagawa A, Ouchi N, Kihara S, Matsuzawa Y, Ogawa H (2003) The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart 89:667. https://doi.org/10.1136/heart.89.6.667
CAS
Article
PubMed
PubMed Central
Google Scholar
Lai Y, Zhou X, Guo F, Jin X, Meng G, Zhou L, Chen H, Liu Z, Yu L, Jiang H (2021) Noninvasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab209
Article
PubMed
Google Scholar
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014
Article
PubMed
Google Scholar
Lu CJ, Hao G, Nikiforova N, Larsen HE, Liu K, Crabtree MJ, Li D, Herring N, Paterson DJ (2015) CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension. Hypertension 65:1288–1297. https://doi.org/10.1161/HYPERTENSIONAHA.115.05290
CAS
Article
PubMed
Google Scholar
Lyu J, Wang M, Kang X, Xu H, Cao Z, Yu T, Huang K, Wu J, Wei X, Lei Q (2020) Macrophage-mediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res Cardiol 115:56. https://doi.org/10.1007/s00395020-0813-3
CAS
Article
PubMed
Google Scholar
Miao W, Jiang L, Xu F, Lyu J, Jiang X, He M, Liu Y, Yang T, Leak RK, Stetler RA, Chen J, Hu X (2021) Adiponectin ameliorates hypoperfusive cognitive deficits by boosting a neuroprotective microglial response. Prog Neurobiol 205:102125. https://doi.org/10.1016/j.pneurobio.2021.102125
CAS
Article
PubMed
Google Scholar
Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, Amaonye M, Beach A, Berth K, Biswas S, Braun MC, Chen HM, Colace TV, Ganey JD, Gangopadhyay SA, Garrity R, Kasiewicz LN, Lavoie J, Madsen JA, Matsumoto Y, Mazzola AM, Nasrullah YS, Nneji J, Ren H, Sanjeev A, Shay M, Stahley MR, Fan SHY, Tam YK, Gaudelli NM, Ciaramella G, Stolz LE, Malyala P, Cheng CJ, Rajeev KG, Rohde E, Bellinger AM, Kathiresan S (2021) In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593:429–434. https://doi.org/10.1038/s41586-02103534-y
CAS
Article
PubMed
Google Scholar
Ng RC, Jian M, Ma OK, Bunting M, Kwan JS, Zhou GJ, Senthilkumar K, Iyaswamy A, Chan PK, Li M, Leung KM, Kumar Durairajan SS, Lam KS, Chu LW, Festenstein R, Chung SK, Chan KH (2021) Chronic oral administration of adipoRon reverses cognitive impairments and ameliorates neuropathology in an Alzheimer’s disease mouse model. Mol Psychiatry 26:5669–5689. https://doi.org/10.1038/s41380-020-0701-0
CAS
Article
PubMed
Google Scholar
Okamoto LE, Raj SR, Gamboa A, Shibao CA, Arnold AC, Garland EM, Black BK, Farley G, Diedrich A, Biaggioni I (2015) Sympathetic activation is associated with increased IL-6, but not CRP in the absence of obesity: lessons from postural tachycardia syndrome and obesity. Am J Physiol Heart Circ Physiol 309:H2098-2107. https://doi.org/10.1152/ajpheart.00409.2015
CAS
Article
PubMed
PubMed Central
Google Scholar
Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15:507–524. https://doi.org/10.1038/s41574-0190230-6
CAS
Article
PubMed
Google Scholar
Schwartz PJ, Ackerman MJ (2022) Cardiac sympathetic denervation in the prevention of genetically mediated life-threatening ventricular arrhythmias. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac134
Article
PubMed
Google Scholar
Shah R, Assis F, Alugubelli N, Okada DR, Cardoso R, Shivkumar K, Tandri H (2019) Cardiac sympathetic denervation for refractory ventricular arrhythmias in patients with structural heart disease: a systematic review. Heart Rhythm 16:1499–1505. https://doi.org/10.1016/j.hrthm.2019.06.018
Article
PubMed
Google Scholar
Sharp TE 3rd, Polhemus DJ, Li Z, Spaletra P, Jenkins JS, Reilly JP, White CJ, Kapusta DR, Lefer DJ, Goodchild TT (2018) Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J Am Coll Cardiol 72:2609–2621. https://doi.org/10.1016/j.jacc.2018.08.2186
Article
PubMed
Google Scholar
Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH (1998) Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart 80:156–162. https://doi.org/10.1136/hrt.80.2.156
CAS
Article
PubMed
PubMed Central
Google Scholar
Sulimai N, Lominadze D (2020) Fibrinogen and neuroinflammation during traumatic brain injury. Mol Neurobiol 57:4692–4703. https://doi.org/10.1007/s12035-020-02012-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Swissa M, Zhou S, Gonzalez-Gomez I, Chang CM, Lai AC, Cates AW, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS (2004) Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 43:858–864. https://doi.org/10.1016/j.jacc.2003.07.053
Article
PubMed
Google Scholar
Tanida M, Shen J, Horii Y, Matsuda M, Kihara S, Funahashi T, Shimomura I, Sawai H, Fukuda Y, Matsuzawa Y, Nagai K (2007) Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats. Exp Biol Med (Maywood) 232:390–397
CAS
Google Scholar
Tentolouris N, Doulgerakis D, Moyssakis I, Kyriaki D, Makrilakis K, Kosmadakis G, Stamatiadis D, Katsilambros N, Stathakis C (2004) Plasma adiponectin concentrations in patients with chronic renal failure: relationship with metabolic risk factors and ischemic heart disease. Horm Metab Res 36:721–727. https://doi.org/10.1055/s-2004-826022
CAS
Article
PubMed
Google Scholar
Tse R, Garland J, McCarthy S, Ondruschka B, Bardsley EN, Wong CX, Stables S, Paton JFR (2022) Sudden cardiac deaths have higher proportion of left stellate ganglionitis. Forensic Sci Med Pathol. https://doi.org/10.1007/s12024-022-00466-5
Article
PubMed
Google Scholar
Vaseghi M, Barwad P, Malavassi Corrales FJ, Tandri H, Mathuria N, Shah R, Sorg JM, Gima J, Mandal K, Saenz Morales LC, Lokhandwala Y, Shivkumar K (2017) Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol 69:3070–3080. https://doi.org/10.1016/j.jacc.2017.04.035
Article
PubMed
PubMed Central
Google Scholar
Wang M, Li S, Zhou X, Huang B, Zhou L, Li X, Meng G, Yuan S, Wang Y, Wang Z, Wang S, Yu L, Jiang H (2017) Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model. Int J Cardiol 248:286–293. https://doi.org/10.1016/j.ijcard.2017.08.011
Article
PubMed
Google Scholar
Wang S, Zhou X, Huang B, Wang Z, Liao K, Saren G, Lu Z, Chen M, Yu L, Jiang H (2015) Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm 12:1628–1635. https://doi.org/10.1016/j.hrthm.2015.03.023
Article
PubMed
Google Scholar
Wang Z, Yu L, Wang S, Huang B, Liao K, Saren G, Tan T, Jiang H (2014) Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ Heart Fail 7:1014–1021. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001564
Article
PubMed
Google Scholar
Ye TY, Lai YQ, Wang ZY, Zhang XG, Meng GN, Zhou LP, Zhang YF, Zhou Z, Deng JL, Wang M, Wang YH, Zhang QQ, Zhou XY, Yu LL, Jiang H, Xiao XH (2019) Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation. Adv Funct Mater. https://doi.org/10.1002/adfm.201902128
Article
Google Scholar
Yu L, Huang B, Po SS, Tan T, Wang M, Zhou L, Meng G, Yuan S, Zhou X, Li X, Wang Z, Wang S, Jiang H (2017) Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc Interv 10:1511–1520. https://doi.org/10.1016/j.jcin.2017.04.036
Article
PubMed
Google Scholar
Yu L, Huang B, Zhou X, Wang S, Wang Z, Wang M, Li X, Zhou L, Meng G, Yuan S, Wang Y, Jiang H (2017) Renal sympathetic stimulation and ablation affect ventricular arrhythmia by modulating autonomic activity in a cesium-induced long QT canine model. Heart Rhythm 14:912–919. https://doi.org/10.1016/j.hrthm.2017.02.010
Article
PubMed
Google Scholar
Yu L, Scherlag BJ, Sha Y, Li S, Sharma T, Nakagawa H, Jackman WM, Lazzara R, Jiang H, Po SS (2012) Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm 9:804–809. https://doi.org/10.1016/j.hrthm.2011.12.023
Article
PubMed
Google Scholar
Yu L, Wang S, Zhou X, Wang Z, Huang B, Liao K, Saren G, Chen M, Po SS, Jiang H (2016) Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model. JACC Clin Electrophysiol 2:330–339. https://doi.org/10.1016/j.jacep.2015.11.006
Article
PubMed
Google Scholar
Yu L, Zhou L, Cao G, Po SS, Huang B, Zhou X, Wang M, Yuan S, Wang Z, Wang S, Jiang H (2017) Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J Am Coll Cardiol 70:2778–2790. https://doi.org/10.1016/j.jacc.2017.09.1107
Article
PubMed
Google Scholar
Yu YL, Thijs L, Yu CG, Yang WY, Melgarejo JD, Wei DM, Wei FF, Nawrot TS, Verhamme P, Roels HA, Staessen JA, Zhang ZY (2021) Two-year responses of heart rate and heart rate variability to first occupational lead exposure. Hypertension 77:1775–1786. https://doi.org/10.1161/HYPERTENSIONAHA.120.16545
CAS
Article
PubMed
Google Scholar
Zhang D, Hu W, Tu H, Hackfort BT, Duan B, Xiong W, Wadman MC, Li YL (2021) Macrophage depletion in stellate ganglia alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis by attenuating neuroinflammation in heart failure. Basic Res Cardiol 116:28. https://doi.org/10.1007/s00395-021-00871-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Yao F, Raizada MK, O’Rourke ST, Sun C (2009) Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 104:1421–1428. https://doi.org/10.1161/CIRCRESAHA.108.192302
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao S, Kusminski CM, Scherer PE (2021) Adiponectin, leptin and cardiovascular disorders. Circ Res 128:136–149. https://doi.org/10.1161/CIRCRESAHA.120.314458
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83. https://doi.org/10.1161/01.RES.0000133678.22968.e3
CAS
Article
PubMed
Google Scholar
Zhou Z, Li S, Sheng X, Liu Z, Lai Y, Wang M, Wang Z, Zhou L, Meng G, Chen H, Zhou H, Zhou X, Jiang H (2020) Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system: a potential treatment target for atrial fibrillation. Int J Cardiol 302:59–66. https://doi.org/10.1016/j.ijcard.2019.12.031
Article
PubMed
Google Scholar
Ziegler KA, Ahles A, Wille T, Kerler J, Ramanujam D, Engelhardt S (2018) Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res 114:291–299. https://doi.org/10.1093/cvr/cvx227
CAS
Article
PubMed
Google Scholar