Skip to main content

Advertisement

Log in

Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The concentration of fibroblast growth factor 23 (FGF23) rises progressively in renal failure (RF). High FGF23 concentrations have been consistently associated with adverse cardiovascular outcomes or death, in chronic kidney disease (CKD), heart failure or liver cirrhosis. We identified the mechanisms whereby high concentrations of FGF23 can increase the risk of death of cardiovascular origin. We studied the effects of FGF23 and Klotho in adult rat ventricular cardiomyocytes (ARVMs) and on the heart of mice with CKD. We show that FGF23 increases the frequency of spontaneous calcium waves (SCWs), a marker of cardiomyocyte arrhythmogenicity, in ARVMs. FGF23 increased sarcoplasmic reticulum Ca2+ leakage, basal phosphorylation of Ca2+-cycling proteins including phospholamban and ryanodine receptor type 2. These effects are secondary to a decrease in phosphodiesterase 4B (PDE4B) in ARVMs and in heart of mice with RF. Soluble Klotho, a circulating form of the FGF23 receptor, prevents FGF23 effects on ARVMs by increasing PDE3A and PDE3B expression. Our results suggest that the combination of high FGF23 and low sKlotho concentrations decreases PDE activity in ARVMs, which favors the occurrence of ventricular arrhythmias and may participate in the high death rate observed in patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abi-Gerges A, Richter W, Lefebvre F, Mateo P, Varin A, Heymes C, Samuel JL, Lugnier C, Conti M, Fischmeister R, Vandecasteele G (2009) Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on β-adrenergic cAMP signals. Circ Res 105:784–792. https://doi.org/10.1161/CIRCRESAHA.109.197947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Almilaji A, Pakladok T, Muñoz C, Elvira B, Lang F, Almilaji A, Pakladok T, Muñoz C, Elvira B, Almilaji A, Pakladok T, Muñoz C, Elvira B, Sopjani M, Lang F (2014) Upregulation of KCNQ1/KCNE1 K channels by Klotho upregulation of KCNQ1/KCNE1 K+ channels by Klotho. Channels. https://doi.org/10.4161/chan.27662

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bers DM (2014) Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107–127. https://doi.org/10.1146/annurev-physiol-020911-153308

    Article  CAS  PubMed  Google Scholar 

  4. Bobin P, Varin A, Lefebvre F, Fischmeister R, Vandecasteele G, Leroy J (2016) Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by camp-phosphodiesterase inhibitors. Cardiovasc Res 110:151–161. https://doi.org/10.1093/cvr/cvw027

    Article  CAS  PubMed  Google Scholar 

  5. Buendía P, Ramírez R, Aljama P, Carracedo J (2016) Chapter five - klotho prevents translocation of NFκB. In: Litwack GBT-V& H (ed) Klotho. Academic Press, pp 119–150

  6. Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu M-C, Moe OW, Liang G, Li X, Mohammadi M (2018) α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553:461–466. https://doi.org/10.1038/nature25451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cilvik SN, Wang JI, Lavine KJ, Uchida K, Castro A, Gierasch CM, Weinheimer CJ, House SL, Kovacs A, Nichols CG, Ornitz DM (2013) Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy. PLoS One 8:1–17. https://doi.org/10.1371/journal.pone.0082979

    Article  CAS  Google Scholar 

  8. Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 278:5493–5496. https://doi.org/10.1074/jbc.R200029200

    Article  CAS  PubMed  Google Scholar 

  9. Courbebaisse M, Lanske B (2018) Biology of fibroblast growth factor 23: from physiology to pathology. Cold Spring Harb Perspect Med 8(5):a031260. https://doi.org/10.1101/cshperspect.a031260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding B, Abe JI, Wei H, Huang Q, Walsh RA, Molina CA, Zhao A, Sadoshima J, Blaxall BC, Berk BC, Yan C (2005) Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: Implication in heart failure. Circulation 111:2469–2476. https://doi.org/10.1161/01.CIR.0000165128.39715.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Faul C, Amaral AP, Oskouei B, Hu M-CC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St. John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-o M, Kusek JW, Keane MG, Wolf M, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, Sutton MSJ, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-o M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Investig 121:4393–4408. https://doi.org/10.1172/jci46122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghigo A, Perino A, Mehel H, Zahradníková A, Morello F, Leroy J, Nikolaev VO, Damilano F, Cimino J, De Luca E, Richter W, Westenbroek R, Catterall WA, Zhang J, Yan C, Conti M, Gomez AM, Vandecasteele G, Hirsch E, Fischmeister R (2012) Phosphoinositide 3-kinase γ protects against catecholamine-induced ventricular arrhythmia through protein kinase A-mediated regulation of distinct phosphodiesterases. Circulation 126:2073–2083. https://doi.org/10.1161/CIRCULATIONAHA.112.114074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstädt H, Stypmann JJ, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C, Pavenstädt H, Stypmann JJ, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C (2015) Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22:1020–1032. https://doi.org/10.1016/j.cmet.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grabner A, Faul C (2016) The role of fibroblast growth factor 23 and Klotho in uremic cardiomyopathy. Am J Physiol Lung Cell Mol Physiol 25:314–324. https://doi.org/10.1097/MNH.0000000000000231

    Article  CAS  Google Scholar 

  15. Gruson D, Lepoutre T, Ketelslegers J-M, Cumps J, Ahn SA, Rousseau MF (2012) C-terminal FGF23 is a strong predictor of survival in systolic heart failure. Peptides 37:258–262. https://doi.org/10.1016/j.peptides.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  16. Han X, Cai C, Xiao Z, Quarles LD (2020) FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice. J Mol Cell Cardiol 138:66–74. https://doi.org/10.1016/j.yjmcc.2019.11.149

    Article  CAS  PubMed  Google Scholar 

  17. Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S, Shimada T (2010) Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int 78:975–980. https://doi.org/10.1038/ki.2010.313

    Article  CAS  PubMed  Google Scholar 

  18. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. https://doi.org/10.1096/fj.10-154765

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang C (2010) Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int 77:855–860. https://doi.org/10.1038/ki.2010.73

    Article  PubMed  Google Scholar 

  20. Isakova T, Houston J, Santacruz L, Schiavenato E, Somarriba G, Harmon WG, Lipshultz SE, Miller TL, Rusconi PG (2013) Associations between fibroblast growth factor 23 and cardiac characteristics in pediatric heart failure. Pediatr Nephrol 28:2035–2042. https://doi.org/10.1007/s00467-013-2515-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ix JH, Katz R, Kestenbaum BR, De Boer IH, Chonchol M, Mukamal KJ, Rifkin D, Siscovick DS, Sarnak MJ, Shlipak MG (2012) Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol 60:200–207. https://doi.org/10.1016/j.jacc.2012.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jérôme L, Aniella A-G, Nikolaev VO, Wito R, Patrick L, Jean-Luc M, Marco C, Rodolphe F, Grégoire V (2008) Spatiotemporal dynamics of β-adrenergic cAMP Signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes. Circ Res 102:1091–1100. https://doi.org/10.1161/CIRCRESAHA.107.167817

    Article  CAS  Google Scholar 

  23. Jurevičius J, Skeberdis VA, Fischmeister R (2003) Role of cyclic nucleotide phosphodieterase isoforms in cAMP compartmentation following β2-adrenergic stimulation of ICa, L in frog ventricular myocytes. J Physiol 551:239–252. https://doi.org/10.1113/jphysiol.2003.045211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klarenbeek JB, Goedhart J, Hink MA, Gadella TWJ, Jalink K (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6:2–7. https://doi.org/10.1371/journal.pone.0019170

    Article  CAS  Google Scholar 

  25. Koller L, Kleber ME, Brandenburg VM, Goliasch G, Richter B, Sulzgruber P, Scharnagl H, Silbernagel G, Grammer TB, Delgado G, Tomaschitz A, Pilz S, Berger R, Mörtl D, Hülsmann M, Pacher R, März W, Niessner A (2015) Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ Hear Fail 8:1059–1067. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002341

    Article  CAS  Google Scholar 

  26. Kuro-o M (2019) The Klotho proteins in health and disease. Nat Rev Nephrol. https://doi.org/10.1038/s41581-018-0078-3

    Article  PubMed  Google Scholar 

  27. Leineweber K, Böhm M, Heusch G (2006) Cyclic adenosine monophosphate in acute myocardial infarction with heart failure slayer or savior? Circulation 114:365–367. https://doi.org/10.1161/CIRCULATIONAHA.106.642132

    Article  PubMed  Google Scholar 

  28. Leroy J, Richter W, Mika D, Castro LRV, Abi-gerges A, Xie M, Scheitrum C, Lefebvre F, Schittl J, Mateo P, Westenbroek R, Catterall WA, Charpentier F, Conti M, Fischmeister R, Vandecasteele G (2011) Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. J Clin Investig 121:2651–2661. https://doi.org/10.1172/JCI44747.association

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lutsey PL, Alonso A, Selvin E, Pankow JS, Michos ED, Agarwal SK, Loehr LR, Eckfeldt JH, Coresh J (2014) Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the atherosclerosis risk in communities study. J Am Hear Assoc 3:e000936. https://doi.org/10.1161/JAHA.114.000936

    Article  CAS  Google Scholar 

  30. Mehta R, Cai X, Lee J, Scialla JJ, Bansal N, Sondheimer JH, Chen J, Hamm LL, Ricardo AC, Navaneethan SD, Deo R, Rahman M, Feldman HI, Go AS, Isakova T, Wolf M, Appel LJ, He J, Kusek JW, Lash JP, Ojo A, Townsend RR (2016) Association of fibroblast growth factor 23 With atrial fibrillation in chronic kidney disease, from the Chronic Renal Insufficiency Cohort Study. JAMA Cardiol 1:548–556. https://doi.org/10.1001/jamacardio.2016.1445

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mika D, Bobin P, Pomérance M, Lechêne P, Westenbroek RE, Catterall WA, Vandecasteele G, Leroy J, Fischmeister R (2013) Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes. Cardiovasc Res 100:336–346. https://doi.org/10.1093/cvr/cvt193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mizia-Stec K, Wieczorek J, Polak M, Wybraniec MT, Woźniak-Skowerska I, Hoffmann A, Nowak S, Wikarek M, Wnuk-Wojnar A, Chudek J, Więcek A (2018) Lower soluble Klotho and higher fibroblast growth factor 23 serum levels are associated with episodes of atrial fibrillation. Cytokine 111:106–111. https://doi.org/10.1016/j.cyto.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  33. Molina CE, Leroy J, Richter W, Xie M, Scheitrum C, Lee IO, Maack C, Rucker-Martin C, Donzeau-Gouge P, Verde I, Llach A, Hove-Madsen L, Conti M, Vandecasteele G, Fischmeister R (2012) Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 59:2182–2190. https://doi.org/10.1016/j.jacc.2012.01.060

    Article  CAS  PubMed  Google Scholar 

  34. Navarro-García JA, Delgado C, Fernández-Velasco M, Val-Blasco A, Rodríguez-Sánchez E, Aceves-Ripoll J, Gómez-Hurtado N, Bada-Bosch T, Mérida-Herrero E, Hernández E, Praga M, Salguero R, Solís J, Arribas F, Delgado JF, Bueno H, Kuro-O M, Ruilope LM, Ruiz-Hurtado G (2019) Fibroblast growth factor-23 promotes rhythm alterations and contractile dysfunction in adult ventricular cardiomyocytes. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfy392

    Article  PubMed  Google Scholar 

  35. Nowak A, Bjorn F, Artunc F, Serra AL, Breidthardt T, Twerenbold R, Peter M, Mueller C (2014) Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One 9:1–11. https://doi.org/10.1371/journal.pone.0100688

    Article  CAS  Google Scholar 

  36. Oikawa M, Wu M, Lim S, Knight WE, Miller CL, Cai Y, Lu Y, Blaxall BC, Takeishi Y, Abe JI, Yan C (2013) Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia–reperfusion injury. J Mol Cell Cardiol 64:11–19. https://doi.org/10.1016/j.yjmcc.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  37. Van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XHT (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679. https://doi.org/10.1161/CIRCULATIONAHA.110.982298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pavik I, Jaeger P, Ebner L, Poster D, Krauer F, Kistler AD, Rentsch K, Andreisek G, Wagner CA, Devuyst O, Wuthrich RP, Schmid C, Serra AL (2012) Soluble klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 7:248–257. https://doi.org/10.2215/CJN.09020911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plischke M, Neuhold S, Adlbrecht C, Bielesz B, Shayganfar S, Bieglmayer C, Szekeres T, Hörl WH, Strunk G, Vavken P, Pacher R, Hülsmann M (2012) Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur J Clin Investig 42:649–656. https://doi.org/10.1111/j.1365-2362.2011.02631.x

    Article  CAS  Google Scholar 

  40. Prié D, Forand A, Francoz C, Elie C, Cohen I, Courbebaisse M, Eladari D, Lebrec D, Durand F, Friedlander G (2013) Plasma fibroblast growth factor 23 concentration is increased and predicts mortality in patients on the liver-transplant waiting list. PLoS One 8:e66182. https://doi.org/10.1371/journal.pone.0066182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Respress JL, Van Oort RJ, Li N, Rolim N, Dixit SS, Dealmeida A, Voigt N, Lawrence WS, Skapura DG, Skårdal K, Wisløff U, Wieland T, Ai X, Pogwizd SM, Dobrev D, Wehrens XHT (2012) Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res 110:1474–1483. https://doi.org/10.1161/CIRCRESAHA.112.268094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rochais F, Abi-Gerges A, Horner K, Lefebvre F, Cooper DMF, Conti M, Fischmeister R, Vandecasteele G (2006) A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res 98:1081–1088. https://doi.org/10.1161/01.RES.0000218493.09370.8e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rochais F, Vandecasteele G, Lefebvre F, Lugnier C, Lum H, Mazet JL, Cooper DMF, Fischmeister R (2004) Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem 279:52095–52105. https://doi.org/10.1074/jbc.M405697200

    Article  CAS  PubMed  Google Scholar 

  44. Sanja B, Faiyaz A, Weixing S, Jie L, Samy M, Nazari P, Junhui S, Steven H, Wook CY, Matthew M, Elizabeth M, Vincent M (2013) Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res 112:289–297. https://doi.org/10.1161/CIRCRESAHA.111.300003

    Article  CAS  Google Scholar 

  45. Sari F, Inci A, Dolu S, Ellidag HY, Cetinkaya R, Ersoy FF (2017) High serum soluble α-Klotho levels in patients with autosomal dominant polycystic kidney disease. J Investig Med 65:358–362. https://doi.org/10.1136/jim-2016-000193

    Article  PubMed  Google Scholar 

  46. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto KI (2007) Correlation between hyperphosphatemia and type II Na–Pi cotransporter activity in klotho mice. Am J Physiol Ren Physiol 292:769–779. https://doi.org/10.1152/ajprenal.00248.2006

    Article  CAS  Google Scholar 

  47. Seiler S, Rogacev KS, Roth HJ, Shafein P, Emrich I, Neuhaus S, Floege J, Fliser D, Heine GH (2014) Associations of FGF-23 and sklotho with cardiovascular outcomes among patients with CKD stages 2–4. Clin J Am Soc Nephrol 9:1049–1058. https://doi.org/10.2215/CJN.07870713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, Renshaw L, Hawkins N, Wang W, Chen C, Tsai M-M, Cattley RC, Wronski TJ, Xia X, Li X, Henley C, Eschenberg M, Richards WG (2012) FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Investig 122:2543–2553. https://doi.org/10.1172/jci61405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shannon TR, Ginsburg KS, Bers DM (2002) Quantitative assessment of the SR Ca2+ leak-load relationship. Circ Res 91:594–600

    Article  CAS  PubMed  Google Scholar 

  50. Souberbielle JC, Prié D, Piketty ML, Rothenbuhler A, Delanaye P, Chanson P, Cavalier E (2017) Evaluation of a new fully automated assay for plasma intact FGF23. Calcif Tissue Int 101:510–518. https://doi.org/10.1007/s00223-017-0307-y

    Article  CAS  PubMed  Google Scholar 

  51. Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Yasui K, Lee J, Kamiya K, Kitaichi K, Ito M, Kondo T, Iino S, Inden Y, Takeshita K, Fujimori T, Kurotaki Y, Honjo H (2004) Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation. https://doi.org/10.1161/01.CIR.0000124224.48962.32

    Article  PubMed  Google Scholar 

  52. Tanaka S, Fujita S, Kizawa S, Morita H, Ishizaka N (2016) Association between FGF23, α-Klotho, and cardiac abnormalities among patients with various chronic kidney disease stages. PLoS One 11:e0156860. https://doi.org/10.1371/journal.pone.0156860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Udell JA, Morrow DA, Jarolim P, Sloan S, Hoffman EB, O’Donnell TF, Vora AN, Omland T, Solomon SD, Pfeffer MA, Braunwald E, Sabatine MS (2014) Fibroblast growth factor-23, cardiovascular prognosis, and benefit of angiotensin-converting enzyme inhibition in stable ischemic heart disease. J Am Coll Cardiol 63:2421–2428. https://doi.org/10.1016/j.jacc.2014.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Verde I, Vandecasteele G, Lezoualc’h F, Fischmeister R (1999) Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br J Pharmacol 127:65–74. https://doi.org/10.1038/sj.bjp.0702506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Webster AC, Nagler EV, Morton RL, Masson P (2016) Chronic kidney disease. Lancet 6736:1–15. https://doi.org/10.1016/S0140-6736(16)32064-5

    Article  Google Scholar 

  56. Wright JD, An SW, Xie J, Lim C, Huang CL (2019) Soluble klotho regulates TRPC6 calcium signaling via lipid rafts, independent of the FGFR-FGF23 pathway. FASEB J 33:9182–9193. https://doi.org/10.1096/fj.201900321R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie J, Cha SK, An SW, Kuro-O M, Birnbaumer L, Huang CL (2012) Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 3:1211–1238. https://doi.org/10.1038/ncomms2240

    Article  CAS  Google Scholar 

  58. Yang H, Luo H, Tang X, Zeng X, Yu Y, Ma L, Fu P (2016) Prognostic value of FGF23 among patients with end-stage renal disease: a systematic review and meta-analysis. Biomark Med 10:547–556. https://doi.org/10.2217/bmm.16.11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to David Bergerat (INSERM U1151-CNRS UMR8253) and Florence Lefebvre (Inserm UMR-S 1180, Faculté de Pharmacie Université Paris-Saclay) for their skillful help in preparing cell cultures.

Funding

This work was supported by grants from the French agency Agence Nationale de la Recherche (CERF ANR-13-BSV1-0002-01, EFIKAC ANR-16-CE14-0010) and Laboratory of Excellence GR-Ex (ANR-11-LABX-0051, ANR-11-IDEX-0005-02) and LERMIT (ANR-10-LABX-33, ANR-11-IDEX-0003-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Prié.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindner, M., Mehel, H., David, A. et al. Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects. Basic Res Cardiol 115, 51 (2020). https://doi.org/10.1007/s00395-020-0810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-020-0810-6

Keywords

Navigation