Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Triad3A attenuates pathological cardiac hypertrophy involving the augmentation of ubiquitination-mediated degradation of TLR4 and TLR9

  • 47 Accesses


Activation of TLRs mediated the NF-κB signaling pathway plays an important pathophysiological role in cardiac hypertrophy. Triad3A, a ubiquitin E3 ligase, has been reported to negatively regulate NF-κB activation pathway via promoting ubiquitination and degradation of TLR4 and TLR9 in innate immune cells. The role of Triad3A in cardiac hypertrophic development remains unknown. The present study investigated whether there is a link between Triad3A and TLR4 and TLR9 in pressure overload induced cardiac hypertrophy. We observed that Triad3A levels were markedly reduced following transverse aortic constriction (TAC) induced cardiac hypertrophy. Similarly, stimulation of neonatal rat cardiac myocytes (NRCMs) with angiotensin-II (Ang II) significantly decreased Triad3A expression. To determine the role of Triad3A in TAC-induced cardiac hypertrophy, we transduced the myocardium with adenovirus expressing Triad3A followed by induction of TAC. We observed that increased expression of Triad3A significantly attenuated cardiac hypertrophy and improved cardiac function. To investigate the mechanisms by which Triad3A attenuated cardiac hypertrophy, we examined the Triad3A E3 ubiquitination on TLR4 and TLR9. We found that Triad3A promoted TLR4 and TLR9 degradation through ubiquitination. Triad3A mediated TLR4 and TLR9 degradation resulted in suppression of NF-κB activation. Our data suggest that Triad3A plays a protective role in the development of cardiac hypertrophy, at least through catalyzing ubiquitination-mediated degradation of TLR4 and TLR9, thus negatively regulating NF-κB activation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. https://doi.org/10.1038/nri1391

  2. 2.

    Aluja D, Inserte J, Penela P, Ramos P, Ribas C, Iniguez MA, Mayor F Jr, Garcia-Dorado D (2019) Calpains mediate isoproterenol-induced hypertrophy through modulation of GRK2. Basic Res Cardiol 114:21. https://doi.org/10.1007/s00395-019-0730-5

  3. 3.

    Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, Ponimaskin E, Schmiedl A, Yin X, Mayr M, Halder R, Fischer A, Engelhardt S, Wei Y, Schober A, Fiedler J, Thum T (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124:2136–2146. https://doi.org/10.1172/JCI70577

  4. 4.

    Blyszczuk P, Kania G, Dieterle T, Marty RR, Valaperti A, Berthonneche C, Pedrazzini T, Berger CT, Dirnhofer S, Matter CM, Penninger JM, Luscher TF, Eriksson U (2009) Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ Res 105:912–920. https://doi.org/10.1161/CIRCRESAHA.109.199802

  5. 5.

    Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72:384–393. https://doi.org/10.1016/j.cardiores.2006.09.011

  6. 6.

    Cai WF, Zhang XW, Yan HM, Ma YG, Wang XX, Yan J, Xin BM, Lv XX, Wang QQ, Wang ZY, Yang HZ, Hu ZW (2010) Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice. Cardiovasc Res 88:140–149. https://doi.org/10.1093/cvr/cvq182

  7. 7.

    Chuang TH, Ulevitch RJ (2004) Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5:495–502. https://doi.org/10.1038/ni1066

  8. 8.

    Deng KQ, Zhao GN, Wang Z, Fang J, Jiang Z, Gong J, Yan FJ, Zhu XY, Zhang P, She ZG, Li H (2018) Targeting transmembrane BAX inhibitor motif containing 1 alleviates pathological cardiac hypertrophy. Circulation 137:1486–1504. https://doi.org/10.1161/CIRCULATIONAHA.117.031659

  9. 9.

    Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, Hong C, Hittinger L, Ghaleh B, Sadoshima J, Vatner DE, Vatner SF, Madura K (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828. https://doi.org/10.1161/CIRCULATIONAHA.106.637827

  10. 10.

    Fan M, Song J, He Y, Shen X, Li J, Que L, Zhu G, Zhu Q, Cai X, Ha T, Chen Q, Xu Y, Li C, Li Y (2016) The TIR/BB-loop mimetic AS-1 attenuates mechanical stress-induced cardiac fibroblast activation and paracrine secretion via modulation of large tumor suppressor kinase 1. Biochim Biophys Acta 1862:1191–1202. https://doi.org/10.1016/j.bbadis.2016.03.002

  11. 11.

    Ha T, Hua F, Li Y, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, Browder IW, Kao RL, Li C (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290:H985–994. https://doi.org/10.1152/ajpheart.00720.2005

  12. 12.

    Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, William Browder I, Kao RL, Li C (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68:224–234. https://doi.org/10.1016/j.cardiores.2005.05.025

  13. 13.

    Han J, Zou C, Mei L, Zhang Y, Qian Y, You S, Pan Y, Xu Z, Bai B, Huang W, Liang G (2017) MD2 mediates angiotensin II-induced cardiac inflammation and remodeling via directly binding to Ang II and activating TLR4/NF-kappaB signaling pathway. Basic Res Cardiol 112:9. https://doi.org/10.1007/s00395-016-0599-5

  14. 14.

    Husain N, Yuan Q, Yen YC, Pletnikova O, Sally DQ, Worley P, Bichler Z, Shawn Je H (2017) TRIAD3/RNF216 mutations associated with Gordon Holmes syndrome lead to synaptic and cognitive impairments via Arc misregulation. Aging Cell 16:281–292. https://doi.org/10.1111/acel.12551

  15. 15.

    Jiang DS, Zhang XF, Gao L, Zong J, Zhou H, Liu Y, Zhang Y, Bian ZY, Zhu LH, Fan GC, Zhang XD, Li H (2014) Signal regulatory protein-alpha protects against cardiac hypertrophy via the disruption of toll-like receptor 4 signaling. Hypertension 63:96–104. https://doi.org/10.1161/HYPERTENSIONAHA.113.01506

  16. 16.

    Kumazoe M, Nakamura Y, Yamashita M, Suzuki T, Takamatsu K, Huang Y, Bae J, Yamashita S, Murata M, Yamada S, Shinoda Y, Yamaguchi W, Toyoda Y, Tachibana H (2017) Green tea polyphenol epigallocatechin-3-gallate suppresses toll-like receptor 4 expression via up-regulation of E3 ubiquitin–protein ligase RNF216. J Biol Chem 292:4077–4088. https://doi.org/10.1074/jbc.M116.755959

  17. 17.

    Li B, Xi P, Wang Z, Han X, Xu Y, Zhang Y, Miao J (2018) PI3K/Akt/mTOR signaling pathway participates in Streptococcus uberis-induced inflammation in mammary epithelial cells in concert with the classical TLRs/NF-kB pathway. Vet Microbiol 227:103–111. https://doi.org/10.1016/j.vetmic.2018.10.031

  18. 18.

    Li C, Gu H, Yu M, Yang P, Zhang M, Ba H, Yin Y, Wang J, Yin B, Zhou X, Li Z (2019) Inhibition of transmembrane TNF-alpha shedding by a specific antibody protects against septic shock. Cell Death Dis 10:586. https://doi.org/10.1038/s41419-019-1808-6

  19. 19.

    Li Y, Ha T, Gao X, Kelley J, Williams DL, Browder IW, Kao RL, Li C (2004) NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 287:H1712–1720. https://doi.org/10.1152/ajpheart.00124.2004

  20. 20.

    Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517. https://doi.org/10.1016/j.ejphar.2017.11.031

  21. 21.

    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–255. https://doi.org/10.1038/nature10992

  22. 22.

    Pillai VB, Sundaresan NR, Gupta MP (2014) Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 114:368–378. https://doi.org/10.1161/CIRCRESAHA.113.300536

  23. 23.

    Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001

  24. 24.

    Song J, Zhu Y, Li J, Liu J, Gao Y, Ha T, Que L, Liu L, Zhu G, Chen Q, Xu Y, Li C, Li Y (2015) Pellino1-mediated TGF-beta1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. J Mol Cell Cardiol 79:145–156. https://doi.org/10.1016/j.yjmcc.2014.11.006

  25. 25.

    Song L, Wang L, Li F, Yukht A, Qin M, Ruther H, Yang M, Chaux A, Shah PK, Sharifi BG (2017) Bone marrow-derived tenascin-C attenuates cardiac hypertrophy by controlling inflammation. J Am Coll Cardiol 70:1601–1615. https://doi.org/10.1016/j.jacc.2017.07.789

  26. 26.

    Toth A, Nickson P, Qin LL, Erhardt P (2006) Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 281:3679–3689. https://doi.org/10.1074/jbc.M509630200

  27. 27.

    Wang X, Robbins J (2014) Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 71:16–24. https://doi.org/10.1016/j.yjmcc.2013.11.006

  28. 28.

    Wang Z, Yu G, Liu Z, Zhu J, Chen C, Liu RE, Xu R (2018) Paeoniflorin inhibits glioblastoma growth in vivo and in vitro: a role for the Triad3A-dependent ubiquitin proteasome pathway in TLR4 degradation. Cancer Manag Res 10:887–897. https://doi.org/10.2147/CMAR.S160292

  29. 29.

    Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, Kolbe T, Stulnig TM, Horl WH, Hengstschlager M, Muller M, Saemann MD (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29:565–577. https://doi.org/10.1016/j.immuni.2008.08.012

  30. 30.

    Weichhart T, Hengstschlager M, Linke M (2015) Regulation of innate immune cell function by mTOR. Nat Rev Immunol 15:599–614. https://doi.org/10.1038/nri3901

  31. 31.

    Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C (2014) The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 71:43–53. https://doi.org/10.1016/j.yjmcc.2013.11.008

  32. 32.

    Willis MS, Patterson C (2006) Into the heart: the emerging role of the ubiquitin–proteasome system. J Mol Cell Cardiol 41:567–579. https://doi.org/10.1016/j.yjmcc.2006.07.015

  33. 33.

    Wu W, Hu Y, Li J, Zhu W, Ha T, Que L, Liu L, Zhu Q, Chen Q, Xu Y, Li C, Li Y (2014) Silencing of Pellino1 improves post-infarct cardiac dysfunction and attenuates left ventricular remodelling in mice. Cardiovasc Res 102:46–55. https://doi.org/10.1093/cvr/cvu007

  34. 34.

    Wu Y, Li Y, Zhang C, Wang Y, Cui W, Li H, Du J (2014) The S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-Induced cardiac inflammation and injury. Hypertension 63:1241–1250. https://doi.org/10.1161/HYPERTENSIONAHA.113.02843

  35. 35.

    Yu L, Feng Z (2018) The role of toll-like receptor signaling in the progression of heart failure. Mediators Inflamm 2018:9874109. https://doi.org/10.1155/2018/9874109

  36. 36.

    Zhang C, Xu Z, He XR, Michael LH, Patterson C (2005) CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 288:H2836–2842. https://doi.org/10.1152/ajpheart.01122.2004

  37. 37.

    Zhang X, Pino GM, Shephard F, Kiss-Toth E, Qwarnstrom EE (2012) Distinct control of MyD88 adapter-dependent and Akt kinase-regulated responses by the interleukin (IL)-1RI co-receptor, TILRR. J Biol Chem 287:12348–12352. https://doi.org/10.1074/jbc.C111.321711

  38. 38.

    Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE (2015) NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFkappaB signaling pathways. Circulation 131:643–655. https://doi.org/10.1161/CIRCULATIONAHA.114.011079

  39. 39.

    Zhu Y, Li T, Song J, Liu C, Hu Y, Que L, Ha T, Kelley J, Chen Q, Li C, Li Y (2011) The TIR/BB-loop mimetic AS-1 prevents cardiac hypertrophy by inhibiting IL-1R-mediated MyD88-dependent signaling. Basic Res Cardiol 106:787–799. https://doi.org/10.1007/s00395-011-0182-z

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 81470418, 81770230).

Author information

Correspondence to Jiantao Li or Yuehua Li.

Ethics declarations

Conflicts of interest

None of the authors declare any conflict of interest regarding this study.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, X., He, Y., Tang, C. et al. Triad3A attenuates pathological cardiac hypertrophy involving the augmentation of ubiquitination-mediated degradation of TLR4 and TLR9. Basic Res Cardiol 115, 19 (2020). https://doi.org/10.1007/s00395-020-0779-1

Download citation


  • riad3A
  • TLR4
  • TLR9
  • Ubiquitination
  • Cardiac hypertrophy