Skip to main content

Advertisement

Log in

Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Ventricular arrhythmia is the most common cause of sudden cardiac death in patients with myocardial infarction (MI). Fibroblast growth factor 21 (FGF21) has been shown to play an important role in cardiovascular and metabolic diseases. However, the effects of FGF21 on ventricular arrhythmias following MI have not been addressed yet. The present study was conducted to investigate the pharmacological action of FGF21 on ventricular arrhythmias after MI. Adult male mice were administrated with or without recombinant human basic FGF21 (rhbFGF21), and the susceptibility to arrhythmias was assessed by programmed electrical stimulation and optical mapping techniques. Here, we found that rhbFGF21 administration reduced the occurrence of ventricular tachycardia (VT), improved epicardial conduction velocity and shorted action potential duration at 90% (APD90) in infarcted mouse hearts. Mechanistically, FGF21 may improve cardiac electrophysiological remodeling as characterized by the decrease of INa and IK1 current density in border zone of infarcted mouse hearts. Consistently, in vitro study also demonstrated that FGF21 may rescue oxidant stress-induced dysfunction of INa and IK1 currents in cultured ventricular myocytes. We further found that oxidant stress-induced down-regulation of early growth response protein 1 (EGR1) contributed to INa and IK1 reduction in post-infarcted hearts, and FGF21 may recruit EGR1 into the SCN5A and KCNJ2 promoter regions to up-regulate NaV1.5 and Kir2.1 expression at transcriptional level. Moreover, miR-143 was identified as upstream of EGR1 and mediated FGF21-induced EGR1 up-regulation in cardiomyocytes. Collectively, rhbFGF21 administration effectively suppressed ventricular arrhythmias in post-infarcted hearts by regulating miR-143-EGR1-NaV1.5/Kir2.1 axis, which provides novel therapeutic strategies for ischemic arrhythmias in clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

APD:

Action potential duration

CMI:

Chronic myocardial infarction

CV:

Conduction velocity

EGR1:

Early growth response protein 1

ES:

Electrical stimulation

FGF:

Fibroblast growth factor

ip:

Intraperitoneal injection

LAD:

Left anterior-descending

LV:

Left ventricle

MI:

Myocardial infarction

NC:

Negative control

NS:

Normal saline

PVCs:

Premature ventricular complexes

rhbFGF21:

Recombinant human basic FGF21

Spon:

Spontaneity

VEB:

Ventricular ectopic beats

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

WT:

Wild-type

References

  1. Agrawal A, Parlee S, Perez-Tilve D, Li P, Pan J, Mroz PA, Kruse Hansen AM, Andersen B, Finan B, Kharitonenkov A, DiMarchi RD (2018) Molecular elements in FGF19 and FGF21 defining KLB/FGFR activity and specificity. Mol Metab 13:45–55. https://doi.org/10.1016/j.molmet.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barichello S, Roberts JD, Backx P, Boyle PM, Laksman Z (2018) Personalizing therapy for atrial fibrillation: the role of stem cell and in silico disease models. Cardiovasc Res 114:931–943. https://doi.org/10.1093/cvr/cvy090

    Article  CAS  PubMed  Google Scholar 

  3. Bergmark BA, Udell JA, Morrow DA, Cannon CP, Steen DL, Jarolim P, Budaj A, Hamm C, Guo J, Im K, Kuder JF, Braunwald E, Sabatine MS, O'Donoghue ML (2018) Association of fibroblast growth factor 23 with recurrent cardiovascular events in patients after an acute coronary syndrome: a secondary analysis of a randomized clinical trial. JAMA Cardiol 3:473–480. https://doi.org/10.1001/jamacardio.2018.0653

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bigger JT Jr, Fleiss JL, Kleiger R, Miller JP, Rolnitzky LM (1984) The relationships among ventricular arrhythmias, left ventricular dysfunction, and mortality in the 2 years after myocardial infarction. Circulation 69:250–258. https://doi.org/10.1161/01.cir.69.2.250

    Article  PubMed  Google Scholar 

  5. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng P, Zhang F, Yu L, Lin X, He L, Li X, Lu X, Yan X, Tan Y, Zhang C (2016) Physiological and pharmacological roles of FGF21 in cardiovascular diseases. J Diabetes Res 2016:1540267. https://doi.org/10.1155/2016/1540267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N (2018) Cardiomyokines from the heart. Cell Mol Life Sci 75:1349–1362. https://doi.org/10.1007/s00018-017-2723-6

    Article  CAS  PubMed  Google Scholar 

  8. Cho JH, Zhang R, Kilfoil PJ, Gallet R, de Couto G, Bresee C, Goldhaber JI, Marban E, Cingolani E (2017) Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction. Circulation 136:2037–2050. https://doi.org/10.1161/circulationaha.117.028202

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coyote-Maestas W, He Y, Myers CL, Schmidt D (2019) Domain insertion permissibility-guided engineering of allostery in ion channels. Nat Commun 10:290. https://doi.org/10.1038/s41467-018-08171-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB (2017) The host cell transcription factor EGR1 is induced by bacteria through the EGFR-ERK1/2 pathway. Front Cell Infect Microbiol 7:16. https://doi.org/10.3389/fcimb.2017.00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH (2015) MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117:870–883. https://doi.org/10.1161/CIRCRESAHA.115.306806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ennis IL, Li RA, Murphy AM, Marban E, Nuss HB (2002) Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. J Clin Invest 109:393–400. https://doi.org/10.1172/JCI13359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fei YD, Wang Q, Hou JW, Li W, Cai XX, Yang YL, Zhang LH, Wei ZX, Chen TZ, Wang YP, Li YG (2019) Macrophages facilitate post myocardial infarction arrhythmias: roles of gap junction and KCa3.1. Theranostics 9:6396–6411. https://doi.org/10.7150/thno.34801

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ferrer-Curriu G, Redondo-Angulo I, Guitart-Mampel M, Ruperez C, Mas-Stachurska A, Sitges M, Garrabou G, Villarroya F, Fernandez-Sola J, Planavila A (2019) Fibroblast growth factor-21 protects against fibrosis in hypertensive heart disease. J Pathol 248:30–40. https://doi.org/10.1002/path.5226

    Article  CAS  PubMed  Google Scholar 

  15. Gardner RT, Wang L, Lang BT, Cregg JM, Dunbar CL, Woodward WR, Silver J, Ripplinger CM, Habecker BA (2015) Targeting protein tyrosine phosphatase sigma after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun 6:6235. https://doi.org/10.1038/ncomms7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han D, Tan H, Sun C, Li G (2018) Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med (Maywood) 243:852–863. https://doi.org/10.1177/1535370218777972

    Article  CAS  Google Scholar 

  17. Henning RJ, Burgos JD, Vasko M, Alvarado F, Sanberg CD, Sanberg PR, Morgan MB (2007) Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant 16:907–917. https://doi.org/10.3727/096368907783338299

    Article  PubMed  Google Scholar 

  18. Hu S, Cao S, Tong Z, Liu J (2018) FGF21 protects myocardial ischemia-reperfusion injury through reduction of miR-145-mediated autophagy. Am J Transl Res 10:3677–3688

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang C, Liu Y, Beenken A, Jiang L, Gao X, Huang Z, Hsu A, Gross GJ, Wang YG, Mohammadi M, Schultz JEJ (2017) A novel fibroblast growth factor-1 ligand with reduced heparin binding protects the heart against ischemia-reperfusion injury in the presence of heparin co-administration. Cardiovasc Res 113:1585–1602. https://doi.org/10.1093/cvr/cvx165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Itoh N, Ohta H, Nakayama Y, Konishi M (2016) Roles of FGF signals in heart development, health, and disease. Front Cell Dev Biol 4:110. https://doi.org/10.3389/fcell.2016.00110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jalife J (2016) Dynamics and molecular mechanisms of ventricular fibrillation in structurally normal hearts. Card Electrophysiol Clin 8:601–612. https://doi.org/10.1016/j.ccep.2016.04.009

    Article  PubMed  Google Scholar 

  22. Kelly A, Salerno S, Connolly A, Bishop M, Charpentier F, Stolen T, Smith GL (2018) Normal interventricular differences in tissue architecture underlie right ventricular susceptibility to conduction abnormalities in a mouse model of Brugada syndrome. Cardiovasc Res 114:724–736. https://doi.org/10.1093/cvr/cvx244

    Article  CAS  PubMed  Google Scholar 

  23. Kunstlinger H, Fassunke J, Schildhaus HU, Brors B, Heydt C, Ihle MA, Mechtersheimer G, Wardelmann E, Buttner R, Merkelbach-Bruse S (2015) FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro. Oncotarget 6:20215–20230. https://doi.org/10.18632/oncotarget.4046

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kuro OM (2019) The Klotho proteins in health and disease. Nat Rev Nephrol 15:27–44. https://doi.org/10.1038/s41581-018-0078-3

    Article  CAS  Google Scholar 

  25. Lawrence TS, Beers WH, Gilula NB (1978) Transmission of hormonal stimulation by cell-to-cell communication. Nature 272:501–506. https://doi.org/10.1038/272501a0

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Zhang Y, Ding D, Yang Y, Chen Q, Su D, Chen X, Yang W, Qiu J, Ling W (2016) Association between serum fibroblast growth factor 21 and mortality among patients with coronary artery disease. J Clin Endocrinol Metab 101:4886–4894. https://doi.org/10.1210/jc.2016-2308

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C, Fang Z, Wei Y, Wang R, Du Z, Zhang Y, Lu Y (2014) MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 5:e1479. https://doi.org/10.1038/cddis.2014.430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu TY, Lin B, Li Y, Arora A, Han L, Cui C, Coronnello C, Sheng Y, Benos PV, Yang L (2013) Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways. J Mol Cell Cardiol 63:146–154. https://doi.org/10.1016/j.yjmcc.2013.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matamoros M, Perez-Hernandez M, Guerrero-Serna G, Amoros I, Barana A, Nunez M, Ponce-Balbuena D, Sacristan S, Gomez R, Tamargo J, Caballero R, Jalife J, Delpon E (2016) Nav1.5 N-terminal domain binding to alpha1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovasc Res 110:279–290. https://doi.org/10.1093/cvr/cvw009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matkovich SJ, Hu Y, Dorn GW 2nd (2013) Regulation of cardiac microRNAs by cardiac microRNAs. Circ Res 113:62–71. https://doi.org/10.1161/CIRCRESAHA.113.300975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Min X, Weiszmann J, Johnstone S, Wang W, Yu X, Romanow W, Thibault S, Li Y, Wang Z (2018) Agonistic beta-Klotho antibody mimics fibroblast growth factor 21 (FGF21) functions. J Biol Chem 293:14678–14688. https://doi.org/10.1074/jbc.RA118.004343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ponce-Balbuena D, Guerrero-Serna G, Valdivia CR, Caballero R, Diez-Guerra FJ, Jimenez-Vazquez EN, Ramirez RJ, Monteiro da Rocha A, Herron TJ, Campbell KF, Willis BC, Alvarado FJ, Zarzoso M, Kaur K, Perez-Hernandez M, Matamoros M, Valdivia HH, Delpon E, Jalife J (2018) Cardiac Kir2.1 and NaV1.5 channels traffic together to the sarcolemma to control excitability. Circ Res 122:1501–1516. https://doi.org/10.1161/CIRCRESAHA.117.311872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reindl M, Reinstadler SJ, Feistritzer HJ, Mueller L, Koch C, Mayr A, Theurl M, Kirchmair R, Klug G, Metzler B (2017) Fibroblast growth factor 23 as novel biomarker for early risk stratification after ST-elevation myocardial infarction. Heart 103:856–862. https://doi.org/10.1136/heartjnl-2016-310520

    Article  CAS  PubMed  Google Scholar 

  35. Roell W, Klein AM, Breitbach M, Becker TS, Parikh A, Lee J, Zimmermann K, Reining S, Gabris B, Ottersbach A, Doran R, Engelbrecht B, Schiffer M, Kimura K, Freitag P, Carls E, Geisen C, Duerr GD, Sasse P, Welz A, Pfeifer A, Salama G, Kotlikoff M, Fleischmann BK (2018) Overexpression of Cx43 in cells of the myocardial scar: correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Sci Rep 8:7145. https://doi.org/10.1038/s41598-018-25147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Su HH, Liao JM, Wang YH, Chen KM, Lin CW, Lee IH, Li YJ, Huang JY, Tsai SK, Yen JC, Huang SS (2019) Exogenous GDF11 attenuates non-canonical TGF-beta signaling to protect the heart from acute myocardial ischemia-reperfusion injury. Basic Res Cardiol 114:20. https://doi.org/10.1007/s00395-019-0728-z

    Article  CAS  PubMed  Google Scholar 

  37. Sunaga H, Koitabashi N, Iso T, Matsui H, Obokata M, Kawakami R, Murakami M, Yokoyama T, Kurabayashi M (2019) Activation of cardiac AMPK-FGF21 feed-forward loop in acute myocardial infarction: role of adrenergic overdrive and lipolysis by-products. Sci Rep 9:11841. https://doi.org/10.1038/s41598-019-48356-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tucker B, Li H, Long X, Rye KA, Ong KL (2019) Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism 101:153994. https://doi.org/10.1016/j.metabol.2019.153994

    Article  CAS  PubMed  Google Scholar 

  39. Wagner S, Maier LS, Bers DM (2015) Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ Res 116:1956–1970. https://doi.org/10.1161/CIRCRESAHA.116.304678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang N, Huo R, Cai B, Lu Y, Ye B, Li X, Li F, Xu H (2016) Activation of Wnt/beta-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression. Free Radic Biol Med 96:34–44. https://doi.org/10.1016/j.freeradbiomed.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Willis BC, Ponce-Balbuena D, Jalife J (2015) Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis. Am J Physiol Heart Circ Physiol 308:H1463–1473. https://doi.org/10.1152/ajpheart.00176.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D (2019) Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 114:40. https://doi.org/10.1007/s00395-019-0748-8

    Article  CAS  PubMed  Google Scholar 

  43. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491. https://doi.org/10.1038/nm1569

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Li X, Zhang Q, Li J, Ju J, Du N, Liu X, Chen X, Cheng F, Yang L, Xu C, Bilal MU, Wei Y, Lu Y, Yang B (2014) Berberine hydrochloride prevents postsurgery intestinal adhesion and inflammation in rats. J Pharmacol Exp Ther 349:417–426. https://doi.org/10.1124/jpet.114.212795

    Article  CAS  PubMed  Google Scholar 

  45. Zhao L, Niu J, Lin H, Zhao J, Liu Y, Song Z, Xiang C, Wang X, Yang Y, Li X, Mohammadi M, Huang Z (2019) Paracrine-endocrine FGF chimeras as potent therapeutics for metabolic diseases. EBioMedicine 48:462–477. https://doi.org/10.1016/j.ebiom.2019.09.052

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhao L, Niu J, Lin H, Zhao J, Liu Y, Song Z, Xiang C, Wang X, Yang Y, Li X, Mohammadi M, Huang Z (2019) Paracrine-endocrine FGF chimeras as potent therapeutics for metabolic diseases. EBioMedicine. https://doi.org/10.1016/j.ebiom.2019.09.052

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Xiaokun Li and Chi Zhang from Wenzhou Medical University (Wenzhou, China) for providing rhbFGF21 in this study.

Funding

The work was supported by Heilongjiang Touyan Innovation Team Program [BFY, CQX, NW, BZC, YZ, ZWP]; the National Key R&D Program of China [2017YFC1307403 to BFY]; and the National Nature Science Foundation of China [Grant No. 81730012 to BFY, 81670207 to CQX, 81573425 and 81773733 to NW]; Natural Science Foundation of Heilongjiang Province [H2016010 to NW]; Foundation of Heilongjiang postdoctoral [LBH-Z18166 to JML]; Basic scientific research Foundation of universities in heilongjiang province [31041180028 to JML] and Outstanding Youth Fostering Foundation of Vihan Academician [NW].

Author information

Authors and Affiliations

Authors

Contributions

BY, NW and BC designed the experiments, performed the experiments, wrote the manuscript. JL and CX helped perform the experiments and edited the manuscript. YL, RuZ, RoZ, YW, MA performed molecular biology, and edited the manuscript. YL participated in statistical analysis. HX and SN cultured the cells, and edited the manuscript. SD, YL, YS performed whole-cell patch-clamp. GX, LS and DL performed optical mapping. ZW, ZP and YZ helped design the experiments, and edited the manuscript.

Corresponding authors

Correspondence to Benzhi Cai, Ning Wang or Baofeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

The corresponding authors have the following order: 1st corresponding author: Baofeng Yang, 2nd corresponding author: Ning Wang, 3rd corresponding author: Benzhi Cai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, C., Liu, Y. et al. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis. Basic Res Cardiol 115, 9 (2020). https://doi.org/10.1007/s00395-019-0768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-019-0768-4

Keywords

Navigation