Basic Research in Cardiology

, 114:42 | Cite as

Junctophilin-2 is a target of matrix metalloproteinase-2 in myocardial ischemia–reperfusion injury

  • Brandon Y. H. Chan
  • Andrej Roczkowsky
  • Woo Jung Cho
  • Mathieu Poirier
  • Tim Y. T. Lee
  • Zabed Mahmud
  • Richard SchulzEmail author
Original Contribution


Junctophilin-2 is a structural membrane protein that tethers T-tubules to the sarcoplasmic reticulum to allow for coordinated calcium-induced calcium release in cardiomyocytes. Defective excitation–contraction coupling in myocardial ischemia–reperfusion (IR) injury is associated with junctophilin-2 proteolysis. However, it remains unclear whether preventing junctophilin-2 proteolysis improves the recovery of cardiac contractile dysfunction in IR injury. Matrix metalloproteinase-2 (MMP-2) is a zinc and calcium-dependent protease that is activated by oxidative stress in myocardial IR injury and cleaves both intracellular and extracellular substrates. To determine whether junctophilin-2 is targeted by MMP-2, isolated rat hearts were perfused in working mode aerobically or subjected to IR injury with the selective MMP inhibitor ARP-100. IR injury impaired the recovery of cardiac contractile function which was associated with increased degradation of junctophilin-2 and damaged cardiac dyads. In IR hearts, ARP-100 improved the recovery of cardiac contractile function, attenuated junctophilin-2 proteolysis, and prevented ultrastructural damage to the dyad. MMP-2 was co-localized with junctophilin-2 in aerobic and IR hearts by immunoprecipitation and immunohistochemistry. In situ zymography showed that MMP activity was localized to the Z-disc and sarcomere in aerobic hearts and accumulated at sites where the striated JPH-2 staining was disrupted in IR hearts. In vitro proteolysis assays determined that junctophilin-2 is susceptible to proteolysis by MMP-2 and in silico analysis predicted multiple MMP-2 cleavage sites between the membrane occupation and recognition nexus repeats and within the divergent region of junctophilin-2. Degradation of junctophilin-2 by MMP-2 is an early consequence of myocardial IR injury which may initiate a cascade of sequelae leading to impaired contractile function.


Ischemia–reperfusion injury Myocardial infarction Matrix metalloproteinase Junctophilin Excitation–contraction coupling Oxidative stress 



This work was supported by grants to R.S. from the Canadian Institutes of Health Research (Foundation #143299) and the Heart and Stroke Foundation of Canada. B.Y.C. was awarded a graduate studentship from the Women and Children’s Health Research Institute, through the generous support of the Stollery Children’s Hospital Foundation and the Royal Alexandra Hospital Foundation. A.R. was awarded graduate studentships from the Faculty of Medicine and Dentistry at the University of Alberta. Some experiments were performed at the University of Alberta Faculty of Medicine & Dentistry Cell Imaging Centre, which receives financial support from the Faculty of Medicine & Dentistry, the Department of Medical Microbiology & Immunology and Canada Foundation for Innovation awards to contributing investigators.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Supplementary material

395_2019_749_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1818 kb)


  1. 1.
    Ali MA, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122:2039–2047. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ali MA, Stepanko A, Fan X, Holt A, Schulz R (2012) Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 423:1–5. CrossRefPubMedGoogle Scholar
  3. 3.
    Ali MAM, Fan F, Schulz R (2011) Cardiac sarcomeric proteins: novel intracellular targets of matrix metalloproteinase-2 in heart disease. Trends Cardiovasc Med 21:112–118CrossRefGoogle Scholar
  4. 4.
    Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205. CrossRefPubMedGoogle Scholar
  5. 5.
    Castro MM, Cena J, Cho WJ, Walsh MP, Schulz R (2012) Matrix metalloproteinase-2 proteolysis of calponin-1 contributes to vascular hypocontractility in endotoxemic rats. Arterioscler Thromb Vasc Biol 32:662–668. CrossRefPubMedGoogle Scholar
  6. 6.
    Cerisano G, Buonamici P, Valenti R, Sciagrà R, Raspanti S, Santini A, Carrabba N, Dovellini EV, Romito R, Pupi A, Colonna P, Antoniucci D (2014) Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J 35:184–191. CrossRefPubMedGoogle Scholar
  7. 7.
    Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R (2000) Matrix metalloproteinase-2 contributes to ischemia–reperfusion injury in the heart. Circulation 101:1833–1839CrossRefGoogle Scholar
  8. 8.
    Eckhard U, Huesgen PF, Schilling O, Bellac CL, Butler GS, Cox JH, Dufour A, Goebeler V, Kappelhoff R, Keller UAD, Klein T, Lange PF, Marino G, Morrison CJ, Prudova A, Rodriguez D, Starr AE, Wang Y, Overall CM (2016) Active site specificity profiling of the matrix metalloproteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol 49:37–60. CrossRefPubMedGoogle Scholar
  9. 9.
    Eisner DA, Caldwell JL, Kistamas K, Trafford AW (2017) Calcium and excitation–contraction coupling in the heart. Circ Res 121:181–195. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia–reperfusion injury and preconditioning. Br J Pharmacol 138:532–543. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Franzini-Armstrong C, Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77:699–729. CrossRefPubMedGoogle Scholar
  12. 12.
    Garbino A, van Oort RJ, Dixit SS, Landstrom AP, Ackerman MJ, Wehrens XH (2009) Molecular evolution of the junctophilin gene family. Physiol Genom 37:175–186. CrossRefGoogle Scholar
  13. 13.
    Guo A, Hall D, Zhang C, Peng T, Miller JD, Kutschke W, Grueter CE, Johnson FL, Lin RZ, Song LS (2015) Molecular determinants of calpain-dependent cleavage of junctophilin-2 protein in cardiomyocytes. J Biol Chem 290:17946–17955. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hadler-Olsen E, Solli AI, Hafstad A, Winberg JO, Uhlin-Hansen L (2015) Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers. J Cell Physiol 230:160–169. CrossRefPubMedGoogle Scholar
  15. 15.
    Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D (2017) Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941. CrossRefPubMedGoogle Scholar
  16. 16.
    Hausenloy DJ, Garcia-Dorado D, Botker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P (2017) Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 113:564–585. CrossRefPubMedGoogle Scholar
  17. 17.
    Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hayashi T, Martone ME, Yu Z, Thor A, Doi M, Holst MJ, Ellisman MH, Hoshijima M (2009) Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 122:1005–1013. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Heusch G, Gersh BJ (2017) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38:774–784. CrossRefPubMedGoogle Scholar
  20. 20.
    Hughes BG, Schulz R (2014) Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 109:424. CrossRefPubMedGoogle Scholar
  21. 21.
    Kopaliani I, Martin M, Zatschler B, Bortlik K, Muller B, Deussen A (2014) Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol 109:419. CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar S, Ratnikov BI, Kazanov MD, Smith JW, Cieplak P (2015) CleavPredict: a platform for reasoning about matrix metalloproteinases proteolytic events. PLoS One 10:e0127877. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Landstrom AP, Kellen CA, Dixit SS, van Oort RJ, Garbino A, Weisleder N, Ma J, Wehrens XH, Ackerman MJ (2011) Junctophilin-2 expression silencing causes cardiocyte hypertrophy and abnormal intracellular calcium-handling. Circ Heart Fail 4:214–223. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Louch WE, Ferrier GR, Howlett SE (2002) Changes in excitation–contraction coupling in an isolated ventricular myocyte model of cardiac stunning. Am J Physiol Heart Circ Physiol 283:H800–H810. CrossRefPubMedGoogle Scholar
  25. 25.
    Louch WE, Mork HK, Sexton J, Stromme TA, Laake P, Sjaastad I, Sejersted OM (2006) T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol 574:519–533. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540CrossRefGoogle Scholar
  27. 27.
    Minamisawa S, Oshikawa J, Takeshima H, Hoshijima M, Wang Y, Chien KR, Ishikawa Y, Matsuoka R (2004) Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies. Biochem Biophys Res Commun 325:852–856. CrossRefPubMedGoogle Scholar
  28. 28.
    Murphy RM, Dutka TL, Horvath D, Bell JR, Delbridge LM, Lamb GD (2013) Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J Physiol 591:719–729. CrossRefPubMedGoogle Scholar
  29. 29.
    Pinali C, Bennett H, Davenport JB, Trafford AW, Kitmitto A (2013) Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res 113:1219–1230. CrossRefPubMedGoogle Scholar
  30. 30.
    Rossello A, Nuti E, Orlandini E, Carelli P, Rapposelli S, Macchia M, Minutolo F, Carbonaro L, Albini A, Benelli R, Cercignani G, Murphy G, Balsamo A (2004) New N-arylsulfonyl-N-alkoxyaminoacetohydroxamic acids as selective inhibitors of gelatinase A (MMP-2). Bioorgan Med Chem 12:2441–2450. CrossRefGoogle Scholar
  31. 31.
    Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG, Szczesna-Cordary D, Schulz R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia–reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552. CrossRefPubMedGoogle Scholar
  32. 32.
    Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342. CrossRefPubMedGoogle Scholar
  33. 33.
    Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-Lopez NL, Schulz R (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43:429–436. CrossRefPubMedGoogle Scholar
  34. 34.
    Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22PubMedGoogle Scholar
  35. 35.
    Tuccinardi T, Martinelli A, Nuti E, Carelli P, Balzano F, Uccello-Barretta G, Murphy G, Rossello A (2006) Amber force field implementation, molecular modelling study, synthesis and MMP-1/MMP-2 inhibition profile of (R)- and (S)-N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutanamides. Bioorgan Med Chem 14:4260–4276. CrossRefGoogle Scholar
  36. 36.
    van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR, Ackerman MJ, Wehrens XH (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123:979–988. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, Leon H, van Mulligen T, Schulz R (2009) Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77:826–834. CrossRefPubMedGoogle Scholar
  38. 38.
    Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GS, Steinbrecher JH, Streich JH, Korff B, Tuan HT, Hagen B, Luther S, Hasenfuss G, Parlitz U, Jafri MS, Hell SW, Lederer WJ, Lehnart SE (2012) Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res 111:402–414. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410:592–596. CrossRefPubMedGoogle Scholar
  40. 40.
    Wang W, Schulze CJ, Suarez-Pinzon W, Dyck J, Sawicki S, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549. CrossRefPubMedGoogle Scholar
  41. 41.
    Woo JS, Hwang JH, Ko JK, Weisleder N, Kim DH, Ma J, Lee EH (2010) S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle. Biochem J 427:125–134. CrossRefPubMedGoogle Scholar
  42. 42.
    Wu CY, Chen B, Jiang YP, Jia Z, Martin DW, Liu S, Entcheva E, Song LS, Lin RZ (2014) Calpain-dependent cleavage of junctophilin-2 and T-tubule remodeling in a mouse model of reversible heart failure. J Am Heart Assoc 3:e000527. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu HD, Xu M, Li RC, Guo L, Lai YS, Xu SM, Li SF, Lu QL, Li LL, Zhang HB, Zhang YY, Zhang CM, Wang SQ (2012) Ultrastructural remodelling of Ca2+ signalling apparatus in failing heart cells. Cardiovasc Res 95:430–438. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xu M, Zhou P, Xu SM, Liu Y, Feng X, Bai SH, Bai Y, Hao XM, Han Q, Zhang Y, Wang SQ (2007) Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol 5:e21. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yasmin W, Strynadka KD, Schulz R (1997) Generation of peroxynitrite contributes to ischemia–reperfusion injury in isolated rat hearts. Cardiovasc Res 33:422–432CrossRefGoogle Scholar
  46. 46.
    Zhang HB, Li RC, Xu M, Xu SM, Lai YS, Wu HD, Xie XJ, Gao W, Ye H, Zhang YY, Meng X, Wang SQ (2013) Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res 98:269–276. CrossRefPubMedGoogle Scholar
  47. 47.
    Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ (2010) Excitation–contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 48:379–386. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research CentreUniversity of AlbertaEdmontonCanada
  2. 2.Faculty of Medicine and Dentistry Cell Imaging CentreUniversity of AlbertaEdmontonCanada
  3. 3.Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations