Skip to main content

Advertisement

Log in

Things get broken: the hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease

  • Invited Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

A major challenge in developing new treatments for myocardial infarction (MI) is an improved understanding of the pathophysiology of hypoxic tissue damage and the activation of endogenous adaptive programs to hypoxia. Due to the relevance of oxygen in metabolism, molecular adaptation to hypoxia driven by the hypoxia-inducible factors (HIFs) and the HIF-regulating prolyl hydroxylase domain enzymes (PHDs) is pivotal for the survival of cells and tissue under hypoxia. The heart under ischemic stress will extensively rely on these mechanisms of endogenous cardiac protection until hypoxia becomes too severe. In the past, work from several laboratories has provided evidence that inhibition of HIF-regulating PHDs might improve the outcome in ischemic heart disease (IHD) potentially because the adaptive mechanisms are boosted early and vigorously. Here, we review the role of the HIF hydroxylase pathway in IHD and highlight the potential of PHD inhibitors as a new treatment for MI with special regard to acute ischemia, reperfusion, and regeneration of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adluri RS, Thirunavukkarasu M, Dunna NR, Zhan L, Oriowo B, Takeda K, Sanchez JA, Otani H, Maulik G, Fong G-H, Maulik N (2011) Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1/) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1α transcription factor and its target genes in mice. Antioxid Redox Signal 15:1789–1797. https://doi.org/10.1089/ars.2010.3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Appelhoff RJ, Tian Y-M, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465. https://doi.org/10.1074/jbc.M406026200

    Article  CAS  PubMed  Google Scholar 

  3. Bao W, Qin P, Needle S, Erickson-Miller CL, Duffy KJ, Ariazi JL, Zhao S, Olzinski AR, Behm DJ, Pipes GCT, Jucker BM, Hu E, Lepore JJ, Willette RN (2010) Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J Cardiovasc Pharmacol 56:147–155. https://doi.org/10.1097/FJC.0b013e3181e2bfef

    Article  CAS  PubMed  Google Scholar 

  4. Bekeredjian R, Walton CB, MacCannell KA, Ecker J, Kruse F, Outten JT, Sutcliffe D, Gerard RD, Bruick RK, Shohet RV (2010) Conditional HIF-1alpha expression produces a reversible cardiomyopathy. PLoS ONE 5:e11693. https://doi.org/10.1371/journal.pone.0011693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102. https://doi.org/10.1126/science.1164680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, dos Remedios C, Malm T, Andrä M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisén J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575. https://doi.org/10.1016/j.cell.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  7. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22:4082–4090. https://doi.org/10.1093/emboj/cdg392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bolli R, Becker L, Gross G, Mentzer R, Balshaw D, Lathrop DA, NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134. https://doi.org/10.1161/01.res.0000137171.97172.d7

    Article  CAS  PubMed  Google Scholar 

  9. Brahimi-Horn C, Mazure N, Pouysségur J (2005) Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cell Signal 17:1–9. https://doi.org/10.1016/j.cellsig.2004.04.010

    Article  CAS  PubMed  Google Scholar 

  10. Cadenas S (2018) ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 117:76–89. https://doi.org/10.1016/j.freeradbiomed.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  11. Cai Z, Luo W, Zhan H, Semenza GL (2013) Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. PNAS 110:17462–17467. https://doi.org/10.1073/pnas.1317158110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108:79–85. https://doi.org/10.1161/01.CIR.0000078635.89229.8A

    Article  CAS  PubMed  Google Scholar 

  13. Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res 77:463–470. https://doi.org/10.1093/cvr/cvm035

    Article  CAS  PubMed  Google Scholar 

  14. Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, Naka Y, Wu EX, Wolgemuth DJ, Chaudhry HW (2007) Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 100:1741–1748. https://doi.org/10.1161/CIRCRESAHA.107.153544

    Article  CAS  PubMed  Google Scholar 

  15. Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T (2010) Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285:31277–31284. https://doi.org/10.1074/jbc.M110.158485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cioffi CL, Liu XQ, Kosinski PA, Garay M, Bowen BR (2003) Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophysic Res Com 303:947–953

    Article  CAS  Google Scholar 

  17. Dendorfer A, Heidbreder M, Hellwig-Bürgel T, Jöhren O, Qadri F, Dominiak P (2005) Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic Biol Med 38:117–124. https://doi.org/10.1016/j.freeradbiomed.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  18. Eckle T, Kohler D, Lehmann R, El Kasmi KC, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a New paradigm for ischemic preconditioning. Circulation 118:166–175. https://doi.org/10.1161/CIRCULATIONAHA.107.758516

    Article  CAS  PubMed  Google Scholar 

  19. Eisner M (2004) The essential neruda selected poems. City Lights Books, San Francisco

    Google Scholar 

  20. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381. https://doi.org/10.1038/nature11739

    Article  CAS  PubMed  Google Scholar 

  21. Fandrey J, Gorr TA, Gassmann M (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71:642–651. https://doi.org/10.1016/j.cardiores.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  22. Fang XY, Spieler D, Albargouni L, Ronel J, Ladwig KH (2018) Impact of generalized anxiety disorder (GAD) on prehospital delay of acute myocardial infarction patients. Findings from the multicenter MEDEA study. Clin Res Cardiol 107:471–478. https://doi.org/10.1007/s00392-018-1208-4

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Dorado D, Théroux P, Duran JM, Solares J, Alonso J, Sanz E, Munoz R, Elizaga J, Botas J, Fernandez-Avilés F (1992) Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85:1160–1174

    Article  CAS  PubMed  Google Scholar 

  24. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouysségur J, Yaniv M, Mechta-Grigoriou F (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794. https://doi.org/10.1016/j.cell.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  25. Ghadge SK, Messner M, Van Pham T, Doppelhammer M, Petry A, Görlach A, Husse B, Franz WM, Zaruba MM (2017) Prolyl-hydroxylase inhibition induces SDF-1 associated with increased CXCR4 +/CD11b+ subpopulations and cardiac repair. J Mol Med. https://doi.org/10.1007/s00109-017-1543-3

    Article  PubMed  Google Scholar 

  26. Gupta N, Wish JB (2017) Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients With CKD. Am J Kidney Dis 69:815–826. https://doi.org/10.1053/j.ajkd.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  27. Haase VH (2017) Therapeutic targeting of the HIF oxygen-sensing pathway: lessons learned from clinical studies. Exp Cell Res 356:160–165. https://doi.org/10.1016/j.yexcr.2017.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM (2012) Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4:966–977. https://doi.org/10.18632/aging.100526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118:216–221. https://doi.org/10.1161/CIRCRESAHA.115.307017

    Article  CAS  PubMed  Google Scholar 

  30. Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusche G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D (2017) Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941. https://doi.org/10.1093/eurheartj/ehw145

    Article  CAS  PubMed  Google Scholar 

  31. Heusch G (2012) HIF-1α and paradoxical phenomena in cardioprotection. Cardiovasc Res 96:214–215. https://doi.org/10.1093/cvr/cvs145

    Article  CAS  PubMed  Google Scholar 

  32. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. https://doi.org/10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  33. Heusch G (2016) Myocardial ischemia: lack of coronary blood flow or myocardial oxygen supply/demand imbalance? Circ Res 119:194–196. https://doi.org/10.1161/CIRCRESAHA.116.308925

    Article  CAS  PubMed  Google Scholar 

  34. Heusch G (2017) Critical issues for the translation of cardioprotection. Circ Res 120:1477–1486. https://doi.org/10.1161/CIRCRESAHA.117.310820

    Article  CAS  PubMed  Google Scholar 

  35. Heusch G, Geersh BJ (2017) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38:774–784. https://doi.org/10.1093/eurheartj/ehw224

    Article  CAS  PubMed  Google Scholar 

  36. Hewitson KS, McNeill LA, Riordan MV, Tian Y-M, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM, Ratcliffe PJ, Pugh CW, Schofield CJ (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355. https://doi.org/10.1074/jbc.C200273200

    Article  CAS  PubMed  Google Scholar 

  37. Hirschler B (2019) China first to approve AstraZeneca, FibroGen anaemia drug. https://www.reuters.com/article/us-astrazeneca-china-anaemia/china-first-to-approve-astrazeneca-fibrogen-anaemia-drug-idUSKBN1OH12Y. Accessed 18 Dec 2018

  38. Hirsilä M, Koivunen P, Günzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278:30772–30780. https://doi.org/10.1074/jbc.M304982200

    Article  CAS  PubMed  Google Scholar 

  39. Hölscher M, Silter M, Krull S, von Ahlen M, Hesse A, Schwartz P, Wielockx B, Breier G, Katschinski DM, Zieseniss A (2011) Cardiomyocyte-specific prolyl-4-hydroxylase domain 2 knock out protects from acute myocardial ischemic injury. J Biol Chem 286:11185–11194. https://doi.org/10.1074/jbc.M110.186809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, DiMaio JM, Amatruda JF, Gerard RD, Hill JA, Bassel-Duby R, Olson EN (2012) C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338:1599–1603. https://doi.org/10.1126/science.1229765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    Article  CAS  PubMed  Google Scholar 

  42. Huang M, Chan DA, Jia F, Xie X, Li Z, Hoyt G, Robbins RC, Chen X, Giaccia AJ, Wu JC (2008) Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118:S226–S233. https://doi.org/10.1161/CIRCULATIONAHA.107.760785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hubbi ME, Kshitiz Gilkes DM, Rey S, Wong CC, Luo W, Kim DH, Dang CV, Levchenko A, Semenza GL (2013) A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication. Sci Signal. https://doi.org/10.1126/scisignal.2003417

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hyvärinen J, Hassinen IE, Sormunen R, Mäki JM, Kivirikko KI, Koivunen P, Myllyharju J (2010) Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J Biol Chem 285:13646–13657. https://doi.org/10.1074/jbc.M109.084855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivan M, Kaelin WG Jr (2017) The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol Cell 66:772–779. https://doi.org/10.1016/j.molcel.2017.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalakech H, Tamareille S, Pons S, Godin-Ribuot D, Carmeliet P, Furber A, Martin V, Berdeaux A, Ghaleh B, Prunier F (2013) Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning. J Mol Cell Cardiol 65:98–104. https://doi.org/10.1016/j.yjmcc.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  47. Karuppagounder SS, Kumar A, Shao DS, Zille M, Bourassa MW, Caulfield JT, Alim I, Ratan RR (2015) Metabolism and epigenetics in the nervous system: creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res 1628:273–287. https://doi.org/10.1016/j.brainres.2015.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kerkelä R, Karsikas S, Szabo Z, Serpi R, Magga J, Gao E, Alitalo K, Anisimov A, Sormunen R, Pietilä I, Vainio L, Koch WJ, Kivirikko KI, Myllyharju J, Koivunen P (2013) Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. Mol Cell Biol 33:3321–3329. https://doi.org/10.1128/MCB.00432-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kevin LG, Camara AKS, Riess ML, Novalija E, Stowe DF (2003) Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion. Am J Physiol Heart Circ Physiol 284:H566–H574

    Article  CAS  PubMed  Google Scholar 

  50. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA (2005) Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 46:2116–2124. https://doi.org/10.1016/j.jacc.2005.08.045

    Article  CAS  PubMed  Google Scholar 

  51. Kim J, Wu Q, Zhang Y, Wiens KM, Huang Y, Rubin N, Shimada H, Handin RI, Chao MY, Tuan TL, Starnes VA, Lien CL (2010) PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci 5:17206–17210. https://doi.org/10.1073/pnas.0915016107

    Article  Google Scholar 

  52. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861. https://doi.org/10.1126/science.1068592

    Article  CAS  PubMed  Google Scholar 

  53. Lee K-H, Park J-W, Chun Y-S (2004) Non-hypoxic transcriptional activation of the aryl hydrocarbon receptor nuclear translocator in concert with a novel hypoxia-inducible factor-1alpha isoform. Nucleic Acids Res 32:5499–5511. https://doi.org/10.1093/nar/gkh880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Call Cardiol 28:1737–1746. https://doi.org/10.1006/jmcc.1996.0163

    Article  CAS  Google Scholar 

  55. Li TS, Cheng K, Malliaras K, Matsushita N, Sun B, Marbán L, Zhang Y, Marbán E (2011) Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovasc Res 89:157–165. https://doi.org/10.1093/cvr/cvq251

    Article  CAS  PubMed  Google Scholar 

  56. Lieb ME, Menzies K, Moschella MC, Ni R, Taubman MB (2002) Mammalian EGLN genes have distinct patterns of mRNA expression and regulation. Biochem Cell Biol 80:421–426

    Article  CAS  PubMed  Google Scholar 

  57. Liu W, Shen SM, Zhao XY, Chen GQ (2012) Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3:165–178

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Loinard C, Ginouvès A, Vilar J, Cochain C, Zouggari Y, Recalde A, Duriez M, Lévy BI, Pouysségur J, Berra E, Silvestre J-S (2009) Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation 120:50–59. https://doi.org/10.1161/CIRCULATIONAHA.108.813303

    Article  CAS  PubMed  Google Scholar 

  59. Maynard MA, Qi H, Chung J, Lee EHL, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278:11032–11040. https://doi.org/10.1074/jbc.M208681200

    Article  CAS  PubMed  Google Scholar 

  60. Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M, Huang WQ, Wotzlaw C, Hellwig-Bürgel T, Jelkmann W, Acker H, Fandrey J (2003) Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci 116:1319–1326

    Article  CAS  PubMed  Google Scholar 

  61. Metzen E, Stiehl DP, Doege K, Marxsen JH, Hellwig-Bürgel T, Jelkmann W (2005) Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 387:711–717. https://doi.org/10.1042/BJ20041736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Minamishima YA, Kaelin WG (2010) Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329:407. https://doi.org/10.1126/science.1192811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kühn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci 110:1446–1456. https://doi.org/10.1073/pnas.1214608110

    Article  PubMed  PubMed Central  Google Scholar 

  64. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. https://doi.org/10.1152/physrev.00024.2007

    Article  CAS  PubMed  Google Scholar 

  65. Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah A, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Deberardinis R, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA (2016) Hypoxia induces heart regeneration in adult mice. Nature 541:222–227. https://doi.org/10.1038/nature20173

    Article  CAS  PubMed  Google Scholar 

  66. Nwogu JI, Geenen D, Bean M, Brenner MC, Huang X, Buttrick PM (2001) Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104:2216–2221. https://doi.org/10.1161/hc4301.097193

    Article  CAS  PubMed  Google Scholar 

  67. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253. https://doi.org/10.1002/jez.1401870208

    Article  CAS  PubMed  Google Scholar 

  68. Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA, Kukreja RC (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289:H542–H548. https://doi.org/10.1152/ajpheart.00089.2005

    Article  CAS  PubMed  Google Scholar 

  69. Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, Kito T, Maruyama S, Yuasa D, Matsuo K, Enomoto T, Uemura Y, Miyabe M, Ishii M, Yamamoto T, Shimizu Y, Walsh K, Murohara T (2012) Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 126:1728–1738. https://doi.org/10.1161/CIRCULATIONAHA.112.115089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ong S-G, Lee WH, Theodorou L, Kodo K, Lim SY, Shukla DH, Briston T, Kiriakidis S, Ashcroft M, Davidson SM, Maxwell PH, Yellon DM, Hausenloy DJ (2014) HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res 104:24–36. https://doi.org/10.1093/cvr/cvu172

    Article  CAS  PubMed  Google Scholar 

  71. Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Filed LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118. https://doi.org/10.1161/01.RES.0000152326.91223.4F

    Article  CAS  PubMed  Google Scholar 

  72. Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landázuri MO, Del Peso L (2005) Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 390:189–197. https://doi.org/10.1042/BJ20042121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Philipp S, Jürgensen JS, Fielitz J, Bernhardt WM, Weidemann A, Schiche A, Pilz B, Dietz R, Regitz-Zagrosek V, Eckardt KU, Willenbrock R (2006) Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur J Heart Fail 8:347–354. https://doi.org/10.1016/j.ejheart.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  74. Piper HM, Kasseckert S, Abdallah Y (2006) The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res 70:170–173. https://doi.org/10.1016/j.cardiores.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  75. Porello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080. https://doi.org/10.1126/science.1200708

    Article  CAS  Google Scholar 

  76. Porello ER (2013) microRNAs in cardiac development and regeneration. Clin Sci 125:151–166. https://doi.org/10.1042/CS20130011

    Article  CAS  Google Scholar 

  77. Porello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by miR-15 family. Proc Natl Acad Sci 110:187–192. https://doi.org/10.1073/pnas.1208863110

    Article  Google Scholar 

  78. Schley G, Klanke B, Schödel J, Kröning S, Türkoglu G, Beyer A, Hagos Y, Amann K, Burckhardt BC, Burzlaff N, Eckardt KU, Willam C (2012) Selective stabilization of HIF-1α in renal tubular cells by 2-oxoglutarate analogues. Am J Pathol 181:1595–1606. https://doi.org/10.1016/j.ajpath.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  79. Schödel J, Bohr D, Klanke B, Schley G, Schlötzer-Schrehardt U, Warnecke C, Kurtz A, Amann K, Eckardt KU, Willam C (2010) Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney Int 78:857–867. https://doi.org/10.1038/ki.2010.284

    Article  CAS  PubMed  Google Scholar 

  80. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu T-D, Guerquin-Kern J-L, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436. https://doi.org/10.1038/nature11682

    Article  CAS  PubMed  Google Scholar 

  81. Steinhoff A, Pientka FK, Möckel S, Kettelhake A, Hartmann E, Köhler M, Depping R (2009) Cellular oxygen sensing: importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochem Biophysic Res Com 387:705–711. https://doi.org/10.1016/j.bbrc.2009.07.090

    Article  CAS  Google Scholar 

  82. Stolze IP, Tian YM, Appelhoff RJ, Turley H, Wykoff CC, Gleadle JM, Ratcliff PJ (2004) Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (FIH) in regulating hypoxia-inducible factor (HIF) transcriptional target genes. J Biol Chem 427:42719–42725. https://doi.org/10.1074/jbc.M406713200

    Article  CAS  Google Scholar 

  83. Stubbs CJ, Loenarz C, Mecinović J, Yeoh KK, Hindley N, Liénard BM, Sobott F, Schofield CJ, Flashman E (2009) Application of a proteolysis/mass spectrometry method for investigating the effects of inhibitors on hydroxylase structure. J Med Chem 52:2799–2805. https://doi.org/10.1021/jm900285r

    Article  CAS  PubMed  Google Scholar 

  84. Takeda K, Ho VC, Takeda H, Duan L-J, Nagy A, Fong G-H (2006) Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26:8336–8346. https://doi.org/10.1128/MCB.00425-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tan SC, Gomes RSM, Yeoh KK, Perbellini F, Malandraki-Miller S, Ambrose L, Heather LC, Faggian G, Schofield CJ, Davies KE, Clarke K, Carr CA (2016) Preconditioning of cardiosphere-derived cells with hypoxia or prolyl-4-hydroxylase inhibitors increases stemness and decreases reliance on oxidative metabolism. Cell Transplant 25:35–53. https://doi.org/10.3727/096368915X687697

    Article  PubMed  Google Scholar 

  86. Tian YM, Mole DR, Ratcliffe PJ, Gleadle JM (2006) Characterization of different isoforms of the HIF prolyl hydroxylase PHD1 generated by alternative initiation. Biochem J 397:179–186. https://doi.org/10.1042/BJ20051996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  88. Villa JC, Chiu D, Brandes AH, Escorcia FE, Villa CH, Maquire WF, Hu CJ, de Stanchina E, Simon MC, Sisodia SS, Scheinberg DA, Li YM (2014) Nontranscriptional role of Hif-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep 8:1077–1092. https://doi.org/10.1016/j.celrep.2014.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vogler M, Zieseniss A, Hesse AR, Levent E, Tiburcy M, Heinze E, Burzlaff N, Schley G, Eckardt KU, Willam C, Katschinski DM (2015) Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflugers Arch 467:2141–2149. https://doi.org/10.1007/s00424-014-1667-z

    Article  CAS  PubMed  Google Scholar 

  90. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ, Coggeshall M, Cornaby L, Dandona L, Dicker DJ, Dilegge T, Erskine HE, Ferrari AJ, Fitzmaurice C, Fleming T, Forouzanfar MH, Fullman N, Gething PW, Goldberg EM, Graetz N, Haagsma JA, Johnson CO, Kassebaum NJ, Kawashima T, Kemmer L, Khalil IA, Kinfu Y, Kyu HH, Leung J, Liang X, Lim SS, Lopez AD, Lozano R, Marczak L, Mensah GA, Mokdad AH, Naghavi M, Nguyen G, Nsoesie E, Olsen H, Pigott DM, Pinho C, Rankin Z, Reinig N, Salomon JA, Sandar L, Smith A, Stanaway J, Steiner C, Teeple S, Thomas BA, Troeger C, Wagner JA, Wang H, Wanga V, Whiteford HA, Zoeckler L, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abraham B, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NME, Ackerman IN, Adebiyi AO, Ademi Z, Adou AK, Afanvi KA, Agardh EE, Agarwal A, Kiadaliri AA, Ahmadieh H, Ajala ON, Akinyemi RO, Akseer N, Al-Aly Z, Alam K, Alam NKM, Aldhahri SF, Alegretti MA, Alemu ZA, Alexander LT, Alhabib S, Ali R, Alkerwi A, Alla F, Allebeck P, Al-Raddadi R, Alsharif U, Altirkawi KA, Alvis-Guzman N, Amare AT, Amberbir A, Amini H, Ammar W, Amrock SM, Andersen HH, Anderson GM, Anderson BO, Antonio CAT, Aregay AF, Ärnlöv J, Al Artaman, Asayesh H, Assadi R, Atique S, Avokpaho EFGA, Awasthi A, Quintanilla BPA, Azzopardi P, Bacha U, Badawi A, Balakrishnan K, Banerjee A, Barac A, Barker-Collo SL, Bärnighausen T, Barregard L, Barrero LH, Basu A, Bazargan-Hejazi S, Bell B, Bell ML, Bennett DA, Bensenor IM, Benzian H, Berhane A, Bernabé E, Betsu BD, Beyene AS, Bhala N, Bhatt S, Biadgilign S, Bienhoff K, Bikbov B, Biryukov S, Bisanzio D, Bjertness E, Blore J, Borschmann R, Boufous S, Brainin M, Brazinova A, Breitborde NJK, Brown J, Buchbinder R, Buckle GC, Butt ZA, Calabria B, Campos-Nonato IR, Campuzano JC, Carabin H, Cárdenas R, Carpenter DO, Carrero JJ, Castañeda-Orjuela CA, Rivas JC, Catalá-López F, Chang J-C, Chiang PPC, Chibueze CE, Chisumpa VH, Choi JYJ, Chowdhury R, Christensen H, Christopher DJ, Ciobanu LG, Cirillo M, Coates MM, Colquhoun SM, Cooper C, Cortinovis M, Crump JA, Damtew SA, Dandona R, Daoud F, Dargan PI, Neves Das J, Davey G, Davis AC, De Leo D, Degenhardt L, Del Gobbo LC, Dellavalle RP, Deribe K, Deribew A, Derrett S, Jarlais Des DC, Dharmaratne SD, Dhillon PK, Diaz-Torné C, Ding EL, Driscoll TR, Duan L, Dubey M, Duncan BB, Ebrahimi H, Ellenbogen RG, Elyazar I, Endres M, Endries AY, Ermakov SP, Eshrati B, Estep K, Farid TA, Farinha CSES, Faro A, Farvid MS, Farzadfar F, Feigin VL, Felson DT, Fereshtehnejad S-M, Fernandes JG, Fernandes JC, Fischer F, Fitchett JRA, Foreman K, Fowkes FGR, Fox J, Franklin RC, Friedman J, Frostad J, Fürst T, Futran ND, Gabbe B, Ganguly P, Gankpé FG, Gebre T, Gebrehiwot TT, Gebremedhin AT, Geleijnse JM, Gessner BD, Gibney KB, Ginawi IAM, Giref AZ, Giroud M, Gishu MD, Glaser E, Godwin WW, Gomez-Dantes H, Gona P, Goodridge A, Gopalani SV, Gotay CC, Goto A, Gouda HN, Grainger R, Greaves F, Guillemin F, Guo Y, Gupta R, Gupta R, Gupta V, Gutiérrez RA, Haile D, Hailu AD, Hailu GB, Halasa YA, Hamadeh RR, Hamidi S, Hammami M, Hancock J, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haro JM, Havmoeller R, Hay RJ, Heredia-Pi IB, Heydarpour P, Hoek HW, Horino M, Horita N, Hosgood HD, Hoy DG, Htet AS, Huang H, Huang JJ, Huynh C, Iannarone M, Iburg KM, Innos K, Inoue M, Iyer VJ, Jacobsen KH, Jahanmehr N, Jakovljevic MB, Javanbakht M, Jayatilleke AU, Jee SH, Jeemon P, Jensen PN, Jiang Y, Jibat T, Jimenez-Corona A, Jin Y, Jonas JB, Kabir Z, Kalkonde Y, Kamal R, Kan H, Karch A, Karema CK, Karimkhani C, Kasaeian A, Kaul A, Kawakami N, Keiyoro PN, Kemp AH, Keren A, Kesavachandran CN, Khader YS, Khan AR, Khan EA, Khang Y-H, Khera S, Khoja TAM, Khubchandani J, Kieling C, Kim P, Kim CI, Kim D, Kim YJ, Kissoon N, Knibbs LD, Knudsen AK, Kokubo Y, Kolte D, Kopec JA, Kosen S, Kotsakis GA, Koul PA, Koyanagi A, Kravchenko M, Defo BK, Bicer BK, Kudom AA, Kuipers EJ, Kumar GA, Kutz M, Kwan GF, Lal A, Lalloo R, Lallukka T, Lam H, Lam JO, Langan SM, Larsson A, Lavados PM, Leasher JL, Leigh J, Leung R, Levi M, Li Y, Li Y, Liang J, Liu S, Liu Y, Lloyd BK, Lo WD, Logroscino G, Looker KJ, Lotufo PA, Lunevicius R, Lyons RA, Mackay MT, Magdy M, El Razek A, Mahdavi M, Majdan M, Majeed A, Malekzadeh R, Marcenes W, Margolis DJ, Martinez-Raga J, Masiye F, Massano J, McGarvey ST, McGrath JJ, McKee M, McMahon BJ, Meaney PA, Mehari A, Mejia-Rodriguez F, Mekonnen AB, Melaku YA, Memiah P, Memish ZA, Mendoza W, Meretoja A, Meretoja TJ, Mhimbira FA, Miller TR, Mills EJ, Mirarefin M, Mitchell PB, Mock CN, Mohammadi A, Mohammed S, Monasta L, Hernandez JCM, Montico M, Mooney MD, Moradi-Lakeh M, Morawska L, Mueller UO, Mullany E, Mumford JE, Murdoch ME, Nachega JB, Nagel G, Naheed A, Naldi L, Nangia V, Newton JN, Ng M, Ngalesoni FN, Le Nguyen Q, Nisar MI, Pete PMN, Nolla JM, Norheim OF, Norman RE, Norrving B, Nunes BP, Ogbo FA, Oh IH, Ohkubo T, Olivares PR, Olusanya BO, Olusanya JO, Ortiz A, Osman M, Ota E, Pa M, Park EK, Parsaeian M, de Azeredo Passos VM, Caicedo AJP, Patten SB, Patton GC, Pereira DM, Perez-Padilla R, Perico N, Pesudovs K, Petzold M, Phillips MR, Piel FB, Pillay JD, Pishgar F, Plass D, Platts-Mills JA, Polinder S, Pond CD, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Prasad NM, Qorbani M, Rabiee RHS, Radfar A, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman SU, Rai RK, Rajsic S, Ram U, Rao P, Refaat AH, Reitsma MB, Remuzzi G, Resnikoff S, Reynolds A, Ribeiro AL, Blancas MJR, Roba HS, Rojas-Rueda D, Ronfani L, Roshandel G, Roth GA, Rothenbacher D, Roy A, Sagar R, Sahathevan R, Sanabria JR, Sanchez-Niño MD, Santos IS, Santos JV, Sarmiento-Suarez R, Sartorius B, Satpathy M, Savic M, Sawhney M, Schaub MP, Schmidt MI, Schneider IJC, Schöttker Ben, Schwebel DC, Scott JG, Seedat S, Sepanlou SG, Servan-Mori EE, Shackelford KA, Shaheen A, Shaikh MA, Sharma R, Sharma U, Shen J, Shepard DS, Sheth KN, Shibuya K, Shin M-J, Shiri R, Shiue I, Shrime MG, Sigfusdottir ID, Silva DAS, Silveira DGA, Singh A, Singh JA, Singh OP, Singh PK, Sivonda A, Skirbekk V, Skogen JC, Sligar A, Sliwa K, Soljak M, Søreide K, Soriano JB, Sposato LA, Sreeramareddy CT, Stathopoulou V, Steel N, Stein DJ, Steiner TJ, Steinke S, Stovner L, Stroumpoulis K, Sunguya BF, Sur P, Swaminathan S, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Takala JS, Tandon N, Tanne D, Tavakkoli M, Taye B, Taylor HR, Te Ao BJ, Tedla BA, Terkawi AS, Thomson AJ, Thorne-Lyman AL, Thrift AG, Thurston GD, Tobe-Gai R, Tonelli M, Topor-Madry R, Topouzis F, Tran BX, Dimbuene ZT, Tsilimbaris M, Tura AK, Tuzcu EM, Tyrovolas S, Ukwaja KN, Undurraga EA, Uneke CJ, Uthman OA, van Gool CH, Varakin YY, Vasankari T, Venketasubramanian N, Verma RK, Violante FS, Vladimirov SK, Vlassov VV, Vollset SE, Wagner GR, Waller SG, Wang L, Watkins DA, Weichenthal S, Weiderpass E, Weintraub RG, Werdecker A, Westerman R, White RA, Williams HC, Wiysonge CS, Wolfe CDA, Won S, Woodbrook R, Wubshet M, Xavier D, Xu G, Yadav AK, Yan LL, Yano Y, Yaseri M, Ye P, Yebyo HG, Yip P, Yonemoto N, Yoon S-J, Younis MZ, Yu C, Zaidi Z, El Sayed Zaki M, Zeeb H, Zhou M, Zodpey S, Zuhlke LJ, Murray CJL, Collaborators G2DAIIAP (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602. https://doi.org/10.1016/s0140-6736(16)31678-6

    Article  Google Scholar 

  91. Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82:3610–3615

    Article  CAS  PubMed  Google Scholar 

  92. Xi L, Taher M, Yin C, Salloum F, Kukreja RC (2004) Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 287:H2369–H2375. https://doi.org/10.1152/ajpheart.00422.2004

    Article  CAS  PubMed  Google Scholar 

  93. Xie L, Pi X, Wang Z, He J, Willis MS, Patterson C (2015) Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J Mol Cell Cardiol 80:156–165. https://doi.org/10.1016/j.yjmcc.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yasumoto K-I, Kowata Y, Yoshida A, Torii S, Sogawa K (2009) Role of the intracellular localization of HIF-prolyl hydroxylases. Biochim Biophysic 1793:792–797. https://doi.org/10.1016/j.bbamcr.2009.01.014

    Article  CAS  Google Scholar 

  95. Zhang J, Li D (2012) Effect of conjugated linoleic acid on inhibition of prolyl hydroxylase 1 in hearts of mice. Lipids Health Dis 11:22. https://doi.org/10.1186/1476-511X-11-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang L, Sun Z, Ren P, You M, Zhang J, Fang L, Wang J, Chen Y, Yan F, Zheng H, Xie M (2017) Localized delivery of shRNA against PHD2 protects the heart from acute myocardial infarction through ultrasound-targeted cationic microbubble destruction. Theranostics 7:51–66. https://doi.org/10.7150/thno.16074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao H-X, Wang X-L, Wang Y-H, Wu Y, Li X-Y, Lv X-P, Zhao Z-Q, Zhao R-R, Liu H-R (2010) Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor-1alpha. Basic Res Cardiol 105:109–118. https://doi.org/10.1007/s00395-009-0044-0

    Article  CAS  PubMed  Google Scholar 

  98. Zieseniss A, Hesse AR, Jatho A, Krull S, Hölscher M, Vogel S, Katschinski DM (2015) Cardiomyocyte-specific transgenic expression of prolyl-4-hydroxylase domain 3 impairs the myocardial response to ischemia. Cell Physiol Biochem 36:843–851. https://doi.org/10.1159/000430260

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Fandrey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreiber, T., Salhöfer, L., Quinting, T. et al. Things get broken: the hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease. Basic Res Cardiol 114, 16 (2019). https://doi.org/10.1007/s00395-019-0725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-019-0725-2

Keywords

Navigation