Skip to main content

Advertisement

Log in

Atrial fibrillation and heart failure-associated remodeling of two-pore-domain potassium (K2P) channels in murine disease models: focus on TASK-1

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Understanding molecular mechanisms involved in atrial tissue remodeling and arrhythmogenesis in atrial fibrillation (AF) is essential for developing specific therapeutic approaches. Two-pore-domain potassium (K2P) channels modulate cellular excitability, and TASK-1 (K2P3.1) currents were recently shown to alter atrial action potential duration in AF and heart failure (HF). Finding animal models of AF that closely resemble pathophysiological alterations in human is a challenging task. This study aimed to analyze murine cardiac expression patterns of K2P channels and to assess modulation of K2P channel expression in murine models of AF and HF. Expression of cardiac K2P channels was quantified by real-time qPCR and immunoblot in mouse models of AF [cAMP-response element modulator (CREM)-IbΔC-X transgenic animals] or HF (cardiac dysfunction induced by transverse aortic constriction, TAC). Cloned murine, human, and porcine TASK-1 channels were heterologously expressed in Xenopus laevis oocytes. Two-electrode voltage clamp experiments were used for functional characterization. In murine models, among members of the K2P channel family, TASK-1 expression displayed highest levels in both atrial and ventricular tissue samples. Furthermore, K2P2.1, K2P5.1, and K2P6.1 showed significant expression levels. In CREM-transgenic mice, atrial expression of TASK-1 was significantly reduced in comparison with wild-type animals. In a murine model of TAC-induced pressure overload, ventricular TASK-1 expression remained unchanged, while atrial TASK-1 levels were significantly downregulated. When heterologously expressed in Xenopus oocytes, currents of murine, porcine, and human TASK-1 displayed similar characteristics. TASK-1 channels display robust cardiac expression in mice. Murine, porcine, and human TASK-1 channels share functional similarities. Dysregulation of atrial TASK-1 expression in murine AF and HF models suggests a mechanistic contribution to arrhythmogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

Atrium

AF:

Atrial fibrillation

APD:

Action potential duration

AVN:

Atrioventricular node

CASQ:

Calsequestrin

CaV:

Voltage-gated calcium channel

CREM:

CAMP-response element modulator

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HF:

Heart failure

IPO8:

Importin 8

K2P :

Two-pore-domain potassium channel

Kcnip2:

Voltage-gated potassium channel interacting protein 2

Kir:

Potassium inward rectifier

KV :

Voltage-gated potassium channel

LA:

Left atrium

LAA:

Left atrial appendage

m:

Murine

M-mode:

Motion mode

NaV :

Voltage-gated sodium channel

RA:

Right atrium

RAA:

Right atrial appendage

RVOT:

Right ventricular outflow tract

RYR:

Ryanodine receptor

SAN:

Sinoatrial node

SR:

Sinus rhythm

SUR:

Sulfonylurea receptor

TAC:

Transverse aortic constriction

TALK:

TWIK-related alkaline pH-activated K+ channel

TASK:

TWIK-related acid-sensitive K+ channel

TG:

Transgene

THIK:

Tandem pore domain in a halothane-inhibited K+ channel

TRAAK:

TWIK-related arachidonic acid-stimulated K+ channel

TREK:

TWIK-related K+ channel

TRESK:

TWIK-related spinal cord K+ channel

TWIK:

Tandem of pore domains in a weak inward rectifying channel

V:

Ventricle

References

  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. https://doi.org/10.1093/bioinformatics/bti770

    Article  PubMed  CAS  Google Scholar 

  2. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Brohawn SG, del Mármol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441. https://doi.org/10.1126/science.1213808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8. https://doi.org/10.1186/1471-2148-10-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. https://doi.org/10.1093/nar/gkn180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Deshmukh A, Barnard J, Sun H, Newton D, Castel L, Pettersson G, Johnston D, Roselli E, Gillinov AM, McCurry K, Moravec C, Smith JD, Van Wagoner DR, Chung MK (2015) Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. Circ Arrhythm Electrophysiol 8:32–41. https://doi.org/10.1161/CIRCEP.114.001632

    Article  PubMed  CAS  Google Scholar 

  7. Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605. https://doi.org/10.1152/physrev.00029.2009

    Article  PubMed  CAS  Google Scholar 

  8. Feliciangeli S, Chatelain FC, Bichet D, Lesage F (2015) The family of K2P channels: salient structural and functional properties. J Physiol 593:2587–2603. https://doi.org/10.1113/jphysiol.2014.287268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Friedrich C, Rinne S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, Stallmeyer B, Schulze-Bahr E, Decher N (2014) Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med 6:937–951. https://doi.org/10.15252/emmm.201303783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA, Chen SA, Chugh SS, Corradi D, D’Avila A, Dobrev D, Fenelon G, Gonzalez M, Hatem SN, Helm R, Hindricks G, Ho SY, Hoit B, Jalife J, Kim YH, Lip GY, Ma CS, Marcus GM, Murray K, Nogami A, Sanders P, Uribe W, Van Wagoner DR, Nattel S (2017) EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Heart Rhythm 14:e3–e40. https://doi.org/10.1016/j.hrthm.2016.05.028

    Article  PubMed  Google Scholar 

  11. Goldstein SAN, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540. https://doi.org/10.1124/pr.57.4.12

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein SAN, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family two-P-domain subunits. Nat Rev Neurosci 2:175–184. https://doi.org/10.1038/35058574

    Article  PubMed  CAS  Google Scholar 

  13. Gore-Panter SR, Rennison JH, Van Wagoner DR (2017) Genetic-genomic insights into the metabolic determinants of spontaneous atrial fibrillation. Circ Arrhythm Electrophysiol. 10:e005636. https://doi.org/10.1161/CIRCEP.117.005636

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173. https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  15. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392. https://doi.org/10.1007/978-1-60761-977-2_3

    Article  PubMed  CAS  Google Scholar 

  16. Kim GE, Ross JL, Xie C, Su KN, Zaha VG, Wu X, Palmeri M, Ashraf M, Akar JG, Russell KS, Akar FG, Young LH (2015) LKB1 deletion causes early changes in atrial channel expression and electrophysiology prior to atrial fibrillation. Cardiovasc Res 108:197–208. https://doi.org/10.1093/cvr/cvv212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P, Agewall S, Camm J, Baron Esquivias G, Budts W, Carerj S, Casselman F, Coca A, De Caterina R, Deftereos S, Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, Guenoun M, Hohnloser SH, Kolh P, Lip GY, Manolis A, McMurray J, Ponikowski P, Rosenhek R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, Tamargo JL, Taylor CJ, Van Gelder IC, Voors AA, Windecker S, Zamorano JL, Zeppenfeld K (2016) 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37:2893–2962. https://doi.org/10.1093/eurheartj/ehw210

    Article  PubMed  Google Scholar 

  18. Kirchhof P, Kahr PC, Kaese S, Piccini I, Vokshi I, Scheld HH, Rotering H, Fortmueller L, Laakmann S, Verheule S, Schotten U, Fabritz L, Brown NA (2011) PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet 4:123–133. https://doi.org/10.1161/CIRCGENETICS.110.958058

    Article  PubMed  CAS  Google Scholar 

  19. Kirchhof P, Marijon E, Fabritz L, Li N, Wang W, Wang T, Schulte K, Hanstein J, Schulte JS, Vogel M, Mougenot N, Laakmann S, Fortmueller L, Eckstein J, Verheule S, Kaese S, Staab A, Grote-Wessels S, Schotten U, Moubarak G, Wehrens XH, Schmitz W, Hatem S, Müller FU (2013) Overexpression of cAMP-response element modulator causes abnormal growth and development of the atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice. Int J Cardiol 166:366–374. https://doi.org/10.1016/j.ijcard.2011.10.057

    Article  PubMed  Google Scholar 

  20. Li N, Chiang DY, Wang S, Wang Q, Sun L, Voigt N, Respress JL, Ather S, Skapura DG, Jordan VK, Horrigan FT, Schmitz W, Müller FU, Valderrabano M, Nattel S, Dobrev D, Wehrens XHT (2014) Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. Circulation 129:1276–1285. https://doi.org/10.1161/CIRCULATIONAHA.113.006611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liang B, Soka M, Christensen AH, Olesen MS, Larsen AP, Knop FK, Wang F, Nielsen JB, Andersen MN, Humphreys D, Mann SA, Huttner IG, Vandenberg JI, Svendsen JH, Haunsø S, Preiss T, Seebohm G, Olesen SP, Schmitt N, Fatkin D (2014) Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J Mol Cell Cardiol 67:69–76. https://doi.org/10.1016/j.yjmcc.2013.12.014

    Article  PubMed  CAS  Google Scholar 

  22. Lugenbiel P, Wenz F, Syren P, Geschwill P, Govorov K, Seyler C, Frank D, Schweizer PA, Franke J, Weis T, Bruehl C, Schmack B, Ruhparwar A, Karck M, Frey N, Katus HA, Thomas D (2017) TREK-1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control. Basic Res Cardiol 112:8. https://doi.org/10.1007/s00395-016-0597-7

    Article  PubMed  CAS  Google Scholar 

  23. Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Trégouet DA, Borczuk A, Rosenzweig EB, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK (2013) A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369:351–361. https://doi.org/10.1056/NEJMoa1211097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mueller FU, Lewin G, Baba HA, Bokník P, Fabritz L, Kirchhefer U, Kirchhof P, Loser K, Matus M, Neumann J, Riemann B, Schmitz W (2005) Heart-directed expression of a human cardiac isoform of cAMP-response element modulator in transgenic mice. J Biol Chem 280:6906–6914. https://doi.org/10.1074/jbc.M407864200

    Article  CAS  Google Scholar 

  25. Riley G, Syeda F, Kirchhof P, Fabritz L (2012) An introduction to murine models of atrial fibrillation. Front Physiol 3:296. https://doi.org/10.3389/fphys.2012.00296

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schmidt C, Wiedmann F, Kallenberger SM, Ratte A, Schulte J, Scholz B, Müller FU, Voigt N, Zafeirioue M-P, Ehrlich JR, Tochtermann U, Veres G, Ruhparwar A, Karck M, Katus HA, Thomas D (2017) Stretch-activated two-pore-domain (K2P) potassium channels in the heart: focus on atrial fibrillation and heart failure. Prog Biophys Mol Biol 130:233–243. https://doi.org/10.1016/j.pbiomolbio.2017.05.004

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt C, Wiedmann F, Langer C, Tristram F, Anand P, Wenzel W, Lugenbiel P, Schweizer P, Katus HA, Thomas D (2014) Cloning, functional characterization and remodeling of K2P3.1 (TASK-1) potassium channels in a porcine model of atrial fibrillation and heart failure. Heart Rhythm 11:1798–1805. https://doi.org/10.1016/j.hrthm.2014.06.020

    Article  PubMed  Google Scholar 

  28. Schmidt C, Wiedmann F, Schweizer PA, Katus HA, Thomas D (2012) Kardiale Zwei-Porendomänen Kaliumkanäle (K2P): physiologie, Pharmakologie und therapeutisches Potential. Dtsch Med Wochenschr 137:1654–1658. https://doi.org/10.1055/s-0032-1305216

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt C, Wiedmann F, Schweizer PA, Katus HA, Thomas D (2014) Inhibition of cardiac two-pore-domain K+ (K2P) channels—an emerging antiarrhythmic concept. Eur J Pharmacol 738:250–255. https://doi.org/10.1016/j.ejphar.2014.05.056

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt C, Wiedmann F, Tristram F, Anand P, Wenzel W, Lugenbiel P, Schweizer P, Katus HA, Thomas D (2013) Cardiac expression and atrial fibrillation-associated remodeling of K2P2.1 (TREK-1) K+ channels in a porcine model. Life Sci S0024–3205:753–754. https://doi.org/10.1016/j.lfs.2013.12.006

    Article  CAS  Google Scholar 

  31. Schmidt C, Wiedmann F, Voigt N, Zhou XB, Heijman J, Lang S, Albert V, Kallenberger S, Ruhparwar A, Szabó G, Kallenbach K, Karck M, Borggrefe M, Biliczki P, Ehrlich JR, Baczkó I, Lugenbiel P, Schweizer PA, Donner BC, Katus HA, Dobrev D, Thomas D (2015) Upregulation of K2P3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 132:82–92. https://doi.org/10.1161/CIRCULATIONAHA.114.012657

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt C, Wiedmann F, Zhou XB, Heijman J, Voigt N, Ratte A, Lang S, Kallenberger SM, Campana C, Weymann A, De Simone R, Szabo G, Ruhparwar A, Kallenbach K, Karck M, Ehrlich JR, Baczkó I, Borggrefe M, Ravens U, Dobrev D, Katus HA, Thomas D (2017) Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy. Eur Heart J 38:1764–1774. https://doi.org/10.1093/eurheartj/ehw559

    Article  PubMed  Google Scholar 

  33. Schotten U, Verheule S, Kirchhof P, Goette A (2009) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325. https://doi.org/10.1152/physrev.00031.2009

    Article  Google Scholar 

  34. Schulte JS, Fehrmann E, Tekook MA, Kranick D, Fels B, Li N, Wehrens XH, Heinick A, Seidl MD, Schmitz W, Müller FU (2016) Cardiac expression of the CREM repressor isoform CREM-IbΔC-X in mice leads to arrhythmogenic alterations in ventricular cardiomyocytes. Basic Res Cardiol 111:15. https://doi.org/10.1007/s00395-016-0532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Seidl MD, Stein J, Hamer S, Pluteanu F, Scholz B, Wardelmann E, Huge A, Witten A, Stoll M, Hammer E, Völker U, Müller FU (2017) Characterization of the genetic program linked to the development of atrial fibrillation in CREM-IbΔC-X mice. Circ Arrhythm Electrophysiol 10:e005075. https://doi.org/10.1161/CIRCEP.117.005075

    Article  PubMed  CAS  Google Scholar 

  36. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030. https://doi.org/10.1161/CIRCRESAHA.109.206581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  38. Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuss L, Gupta SN, Schmidt K, Lehnart SE, Krüger M, Linke WA, Backs J, Regitz-Zagrosek V, Schäfer K, Field LJ, Maier LS, Hasenfuss G (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003. https://doi.org/10.1074/jbc.M407864200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vettel C, Lindner M, Dewenter M, Lorenz K, Schanbacher C, Riedel M, Lammle S, Meinecke S, Mason FE, Sossalla S, Geerts A, Hoffmann M, Wunder F, Brunner FJ, Wieland T, Mehel H, Karam S, Lechêne P, Leroy J, Vandecasteele G, Wagner M, Fischmeister R, El-Armouche A (2017) Phosphodiesterase 2 protects against catecholamine-induced arrhythmia and preserves contractile function after myocardial infarction. Circ Res 120:120–132. https://doi.org/10.1161/CIRCRESAHA.116.310069

    Article  PubMed  CAS  Google Scholar 

  40. Voigt N, Dobrev D (2011) Ion channel remodelling in atrial fibrillation. Eur Cardiol Rev. 7:97. https://doi.org/10.15420/ecr.2011.7.2.97

    Article  Google Scholar 

  41. Voigt N, Dobrev D (2016) Atrial-selective potassium channel blockers. Card Electrophysiol Clin 8:411–421. https://doi.org/10.1016/j.ccep.2016.02.005

    Article  PubMed  Google Scholar 

  42. Wiedmann F, Schmidt C, Lugenbiel P, Staudacher I, Rahm AK, Seyler C, Schweizer PA, Katus HA, Thomas D (2016) Therapeutic targeting of two-pore-domain potassium (K2P) channels in the cardiovascular system. Clin Sci (Lond) 130:643–650. https://doi.org/10.1042/CS20150533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The excellent technical support of Katrin Kupser, Kai Sona and Stefanie Triebel is gratefully acknowledged. This study was supported in part by research grants from the University of Heidelberg, Faculty of Medicine (Rahel Goitein-Straus Scholarship and Olympia-Morata Scholarship to C. S.), from the DZHK (German Center for Cardiovascular Research; Excellence Grant to C. S.), from the German Cardiac Society and the Hengstberger Foundation (Klaus-Georg and Sigrid Hengstberger Scholarship to D. T.), from the German Heart Foundation/German Foundation of Heart Research (F/41/15 to C. S., F/08/14 to D.T.), from the Else Kröner-Fresenius-Stiftung (2014_A242 to D. T. and EKFS 2016_A20 to N. V.), from the Joachim Siebenreicher Foundation (to D. T.), from the Deutsche Forschungsgemeinschaft (German Research Foundation; SCHM 3358/1-1 to C. S., TH 1120/7-1 to D. T., MU 1376/11-3 to F. U. M and VO 1568/3-1, IRTG1816 RP12, SFB1002 TPA13 to N. V.), and from the Ministry of Science, Research and the Arts Baden-Wuerttemberg (Sonderlinie Medizin to D. T.). F. W. was supported by the German Cardiac Society (Fellowship and Otto-Hess-Scholarship), and A. R. was supported by the Kaltenbach-Scholarship of the German Heart Foundation/German Foundation of Heart Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constanze Schmidt.

Ethics declarations

Ethical standards

Animal experiments were carried out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the US National Institutes of Health (NIH publication No. 86-23, revised 1985) and with EU Directive 2010/63/EU, and the current version of the German Law on the Protection of Animals was followed. The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiedmann, F., Schulte, J.S., Gomes, B. et al. Atrial fibrillation and heart failure-associated remodeling of two-pore-domain potassium (K2P) channels in murine disease models: focus on TASK-1. Basic Res Cardiol 113, 27 (2018). https://doi.org/10.1007/s00395-018-0687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-018-0687-9

Keywords

Navigation