Skip to main content
Log in

Role of the angiotensin-converting enzyme in the G-CSF-induced mobilization of progenitor cells

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In addition to being a peptidase, the angiotensin-converting enzyme (ACE) can be phosphorylated and involved in signal transduction. We evaluated the role of ACE in granulocyte-colony-stimulating factor (G-CSF)-induced hematopoietic progenitor cell (HPC) mobilization and detected a significant increase in mice-lacking ACE. Transplantation experiments revealed that the loss of ACE in the HPC microenvironment rather than in the HPCs increased mobilization. Indeed, although ACE was expressed by a small population of bone-marrow cells, it was more strongly expressed by endosteal bone. Interestingly, there was a physical association of ACE with the G-CSF receptor (CD114), and G-CSF elicited ACE phosphorylation on Ser1270 in vivo and in vitro. A transgenic mouse expressing a non-phosphorylatable ACE (ACES/A) mutant demonstrated increased G-CSF-induced HPC mobilization and decreased G-CSF-induced phosphorylation of STAT3 and STAT5. These results indicate that ACE expression/phosphorylation in the bone-marrow niche interface negatively regulates G-CSF-induced signaling and HPC mobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Azizi M, Junot C, Ezan E, Menard J (2001) Angiotensin I-converting enzyme and metabolism of the haematological peptide N-acetyl-seryl-aspartyl-lysyl-proline. Clin Exp Pharmacol Physiol 28:1066–1069. https://doi.org/10.1046/j.1440-1681.2001.03560

    Article  CAS  PubMed  Google Scholar 

  2. Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM, Lenfant M, Corvol P, Menard J (1996) Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Investig 97:839–844. https://doi.org/10.1172/JCI118484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernstein KE, Koronyo Y, Salumbides BC, Sheyn J, Pelissier L, Lopes DH, Shah KH, Bernstein EA, Fuchs DT, Yu JJ, Pham M, Black KL, Shen XZ, Fuchs S, Koronyo-Hamaoui M (2014) Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline. J Clin Investig 124:1000–1012. https://doi.org/10.1172/JCI66541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bocchietto E, Guglielmetti A, Silvagno F, Taraboletti G, Pescarmona GP, Mantovani A, Bussolino F (1993) Proliferative and migratory responses of murine microvascular endothelial cells to granulocyte-colony-stimulating factor. J Cell Physiol 155:89–95. https://doi.org/10.1002/jcp.1041550112

    Article  CAS  PubMed  Google Scholar 

  5. Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, McRoberts JA (2008) Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet 22:315–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campbell DJ, Alexiou T, Xiao HD, Fuchs S, McKinley MJ, Corvol P, Bernstein KE (2004) Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension 43:854–859. https://doi.org/10.1161/01.HYP.0000119190.06968.f1

    Article  CAS  PubMed  Google Scholar 

  7. Cole J, Ertoy D, Lin H, Sutliff RL, Ezan E, Guyene TT, Capecchi M, Corvol P, Bernstein KE (2000) Lack of angiotensin II-facilitated erythropoiesis causes anemia in angiotensin-converting enzyme-deficient mice. J Clin Investig 106:1391–1398. https://doi.org/10.1172/JCI10557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cole JM, Xiao H, Adams JW, Disher KM, Zhao H, Bernstein KE (2003) New approaches to genetic manipulation of mice: tissue-specific expression of ACE. Am J Physiol Ren Physiol 284:F599–F607. https://doi.org/10.1152/ajprenal.00308.2002

    Article  CAS  Google Scholar 

  9. Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O, Vilk G, Doherty-Kirby A, Lajoie G, Litchfield DW, Pinna LA (2003) Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J 372:841–849. https://doi.org/10.1042/BJ20021905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Durik M, Seva PB, Roks AJ (2012) The renin–angiotensin system, bone marrow and progenitor cells. Clin Sci (Lond) 123:205–223. https://doi.org/10.1042/CS20110660

    Article  CAS  Google Scholar 

  11. Fleming I, Kohlstedt K, Busse R (2005) New fACEs to the renin–angiotensin system. Physiology (Bethesda) 20:91–95. https://doi.org/10.1152/physiol.00003.2005

    CAS  Google Scholar 

  12. Garcia P, Schwenzer S, Slotta JE, Scheuer C, Tami AE, Holstein JH, Histing T, Burkhardt M, Pohlemann T, Menger MD (2010) Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin-angiotensin system. Br J Pharmacol 159:1672–1680. https://doi.org/10.1111/j.1476-5381.2010.00651.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gould AB, Goodman SA (1990) Effect of an angiotensin-converting enzyme inhibitor on blood pressure and erythropoiesis in rats. Eur J Pharmacol 181:225–234. https://doi.org/10.1016/0014-2999(90)90082-H

    Article  CAS  PubMed  Google Scholar 

  14. Griffing GT, Melby JC (1982) Enalapril (MK-421) and the white cell count and haematocrit. Lancet 1:1361. https://doi.org/10.1016/S0140-6736(82)92430-8

    Article  CAS  PubMed  Google Scholar 

  15. Hirakata H, Onoyama K, Iseki K, Kumagai H, Fujimi S, Omae T (1984) Worsening of anemia induced by long-term use of captopril in hemodialysis patients. Am J Nephrol 4:355–360. https://doi.org/10.1159/000166851

    Article  CAS  PubMed  Google Scholar 

  16. Hoggatt J, Pelus LM (2011) Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Stem Cell Res Ther 2:13. https://doi.org/10.1186/scrt54

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hubert C, Savary K, Gasc JM, Corvol P (2006) The hematopoietic system: a new niche for the renin–angiotensin system. Nat Clin Pract Cardiovasc Med 3:80–85. https://doi.org/10.1038/ncpcardio0449

    Article  CAS  PubMed  Google Scholar 

  18. Izu Y, Mizoguchi F, Kawamata A, Hayata T, Nakamoto T, Nakashima K, Inagami T, Ezura Y, Noda M (2009) Angiotensin II type 2 receptor blockade increases bone mass. J Biol Chem 284:4857–4864. https://doi.org/10.1074/jbc.M807610200

    Article  CAS  PubMed  Google Scholar 

  19. Jokubaitis VJ, Sinka L, Driessen R, Whitty G, Haylock DN, Bertoncello I, Smith I, Peault B, Tavian M, Simmons PJ (2008) Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood 111:4055–4063. https://doi.org/10.1182/blood-2007-05-091710

    Article  CAS  PubMed  Google Scholar 

  20. Kamezaki K, Shimoda K, Numata A, Haro T, Kakumitsu H, Yoshie M, Yamamoto M, Takeda K, Matsuda T, Akira S, Ogawa K, Harada M (2005) Roles of Stat3 and ERK in G-CSF signaling. Stem Cells 23:252–263. https://doi.org/10.1634/stemcells.2004-0173a

    Article  CAS  PubMed  Google Scholar 

  21. Kendrick TS, Bogoyevitch MA (2007) Activation of mitogen-activated protein kinase pathways by the granulocyte colony-stimulating factor receptor: mechanisms and functional consequences. Front Biosci 12:591–607. https://doi.org/10.2741/2085

    Article  CAS  PubMed  Google Scholar 

  22. Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I (2004) Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 94:60–67. https://doi.org/10.1161/01.RES.0000107195.13573.E4

    Article  CAS  PubMed  Google Scholar 

  23. Kohlstedt K, Busse R, Fleming I (2005) Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Hypertension 45:126–132. https://doi.org/10.1161/01.HYP.0000150159.48992.11

    Article  CAS  PubMed  Google Scholar 

  24. Kohlstedt K, Gershome C, Friedrich M, Muller-Esterl W, Alhenc-Gelas F, Busse R, Fleming I (2006) Angiotensin-converting enzyme (ACE) dimerization is the initial step in the ACE inhibitor-induced ACE signaling cascade in endothelial cells. Mol Pharmacol 69:1725–1732. https://doi.org/10.1124/mol.105.020636

    Article  CAS  PubMed  Google Scholar 

  25. Kohlstedt K, Shoghi F, Muller-Esterl W, Busse R, Fleming I (2002) CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. Circ Res 91:749–756. https://doi.org/10.1161/01.RES.0000038114.17939.C8

    Article  CAS  PubMed  Google Scholar 

  26. Kohlstedt K, Trouvain C, Boettger T, Shi L, Fisslthaler B, Fleming I (2013) AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145. Circ Res 112:1150–1158. https://doi.org/10.1161/CIRCRESAHA.113.301282

    Article  CAS  PubMed  Google Scholar 

  27. Lee M, Aoki M, Kondo T, Kobayashi K, Okumura K, Komori K, Murohara T (2005) Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor. Arterioscler Thromb Vasc Biol 25:2535–2541. https://doi.org/10.1161/01.ATV.0000190609.28293.17

    Article  CAS  PubMed  Google Scholar 

  28. Li J (2013) JAK-STAT and bone metabolism. JAKSTAT 2(3):e23930. https://doi.org/10.4161/jkst.23930

    PubMed  PubMed Central  Google Scholar 

  29. Lin C, Datta V, Okwan-Duodu D, Chen X, Fuchs S, Alsabeh R, Billet S, Bernstein KE, Shen XZ (2010) Angiotensin-converting enzyme is required for normal myelopoiesis. FASEB J 25:1145–1155. https://doi.org/10.1096/fj.10-169433

    Article  PubMed  Google Scholar 

  30. Nicholson A, Reifsnyder PC, Malcolm RD, Lucas CA, MacGregor GR, Zhang W, Leiter EH (2010) Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide transhydrogenase (Nnt) gene. Obesity 18:1902–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park TS, Zambidis ET (2009) A role for the renin–angiotensin system in hematopoiesis. Haematologica 94:745–747. https://doi.org/10.3324/haematol.2009.006965

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pratt MC, Lewis-Barned NJ, Walker RJ, Bailey RR, Shand BI, Livesey J (1992) Effect of angiotensin converting enzyme inhibitors on erythropoietin concentrations in healthy volunteers. Br J Clin Pharmacol 34:363–365. https://doi.org/10.1111/j.1365-2125.1992.tb05644.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Richter R, Forssmann W, Henschler R (2017) Current developments in mobilization of hematopoietic stem and progenitor cells and their interaction with niches in bone marrow. Transfus Med Hemother 44:151–164. https://doi.org/10.1159/000477262

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodgers KE, diZerega GS (2013) Contribution of the local RAS to hematopoietic function: a novel therapeutic target. Front Endocrinol (Lausanne) 4:157. https://doi.org/10.3389/fendo.2013.00157

    Google Scholar 

  35. Rodgers KE, Xiong S, diZerega GS (2002) Accelerated recovery from irradiation injury by angiotensin peptides. Cancer Chemother Pharmacol 49:403–411. https://doi.org/10.1007/s00280-002-0434-6

    Article  CAS  PubMed  Google Scholar 

  36. Rodgers KE, Xiong S, Steer R, diZerega GS (2000) Effect of angiotensin II on hematopoietic progenitor cell proliferation. Stem Cells 18:287–294. https://doi.org/10.1634/stemcells.18-4-287

    Article  CAS  PubMed  Google Scholar 

  37. Rousseau-Plasse A, Lenfant M, Potier P (1996) Catabolism of the hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro: a new insight into the physiological role of the angiotensin-I-converting enzyme N-active site. Bioorg Med Chem 4:1113–1119. https://doi.org/10.1016/0968-0896(96)00104-6

    Article  CAS  PubMed  Google Scholar 

  38. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027. https://doi.org/10.1182/blood-2004-01-0272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen XZ, Bernstein KE (2011) The peptide network regulated by angiotensin converting enzyme (ACE) in hematopoiesis. Cell Cycle 10:1363–1369. https://doi.org/10.4161/cc.10.9.15444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, Sorg T, Wong K, Bedu E, Cartwright EJ, Dacquin R, Djebali S, Estabel J, Graw J, Ingham NJ, Jackson IJ, Lengeling A, Mandillo S, Marvel J, Meziane H, Preitner F, Puk O, Roux M, Adams DJ, Atkins S, Ayadi A, Becker L, Blake A, Brooker D, Cater H, Champy MF, Combe R, Danecek P, di Fenza A, Gates H, Gerdin AK, Golini E, Hancock JM, Hans W, Hölter SM, Hough T, Jurdic P, Keane TM, Morgan H, Müller W, Neff F, Nicholson G, Pasche B, Roberson LA, Rozman J, Sanderson M, Santos L, Selloum M, Shannon C, Southwell A, Tocchini-Valentini GP, Vancollie VE, Westerberg H, Wurst W, Zi M, Yalcin B, Ramirez-Solis R, Steel KP, Mallon AM, de Angelis MH, Herault Y, Brown SD (2013) A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14:R82. https://doi.org/10.1186/gb-2013-14-7-r82

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sinka L, Biasch K, Khazaal I, Peault B, Tavian M (2012) Angiotensin-converting enzyme (CD143) specifies emerging lympho-hematopoietic progenitors in the human embryo. Blood 119:3712–3723. https://doi.org/10.1182/blood-2010-11-314781

    Article  CAS  PubMed  Google Scholar 

  42. Skidgel RA, Engelbrecht S, Johnson AR, Erdos EG (1984) Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5:769–776. https://doi.org/10.1016/0196-9781(84)90020-2

    Article  CAS  PubMed  Google Scholar 

  43. Vlahakos DV, Canzanello VJ, Madaio MP, Madias NE (1991) Enalapril-associated anemia in renal transplant recipients treated for hypertension. Am J Kidney Dis 17:199–205. https://doi.org/10.1016/S0272-6386(12)81129-2

    Article  CAS  PubMed  Google Scholar 

  44. Zambidis ET, Park TS, Yu W, Tam A, Levine M, Yuan X, Pryzhkova M, Peault B (2008) Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112:3601–3614. https://doi.org/10.1182/blood-2008-03-144766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Isabel Winter, Marie von Reutern, Mechthild Piepenbrock, and Katharina Herbig for expert technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (FL 364/1-3 to I.F., KO 4263/2-1 to K.K., SFB 834/Z1 to R.H., and Exzellenzcluster 147 “Cardio-Pulmonary Systems”). The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

KK planned experiments, interpreted data, and drafted the manuscript. TF was responsible for designing the generation of the transgenic mouse. CT performed experiments and interpreted data. TM performed immunohistochemistry for ACE. RH provided valuable expertise and laboratory facilities for the study of progenitor cell populations. IF planned experiments, interpreted data, and took a lead role in writing the manuscript.

Corresponding author

Correspondence to Ingrid Fleming.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlstedt, K., Trouvain, C., Frömel, T. et al. Role of the angiotensin-converting enzyme in the G-CSF-induced mobilization of progenitor cells. Basic Res Cardiol 113, 18 (2018). https://doi.org/10.1007/s00395-018-0677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-018-0677-y

Keywords

Navigation