Skip to main content
Log in

Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In microvessels of patients with coronary artery disease (CAD), flow-mediated dilation (FMD) is largely dependent upon the endothelium-derived hyperpolarizing factor H2O2. The goal of this study is to examine the influence of age and presence or absence of disease on the mechanism of FMD. Human coronary or adipose arterioles (~150 µm diameter) were prepared for videomicroscopy. The effect of inhibiting COX [indomethacin (Indo) or NOS (L-NAME), eliminating H2O2 (polyethylene glycol-catalase (PEG-CAT)] or targeting a reduction in mitochondrial ROS with scavengers/inhibitors [Vitamin E (mtVitamin E); phenylboronic acid (mtPBA)] was determined in children aged 0–18 years; young adults 19–55 years; older adults >55 years without CAD, and similarly aged adults with CAD. Indo eliminated FMD in children and reduced FMD in younger adults. This response was mediated mainly by PGI2, as the prostacyclin-synthase-inhibitor trans-2-phenyl cyclopropylamine reduced FMD in children and young adults. L-NAME attenuated dilation in children and younger adults and eliminated FMD in older adults without CAD, but had no effect on vessels from those with CAD, where mitochondria-derived H2O2 was the primary mediator. The magnitude of dilation was reduced in older compared to younger adults independent of CAD. Exogenous treatment with a sub-dilator dose of NO blocked FMD in vessels from subjects with CAD, while prolonged inhibition of NOS in young adults resulted in a phenotype similar to that observed in disease. The mediator of coronary arteriolar FMD evolves throughout life from prostacyclin in youth, to NO in adulthood. With the onset of CAD, NO-inhibitable release of H2O2 emerges as the exclusive mediator of FMD. These findings have implications for use of pharmacological agents, such as nonsteroidal anti-inflammatory agents in children and the role of microvascular endothelium in cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

BSA:

Bovine serum albumin

CAD:

Coronary artery disease

COX:

Cyclooxygenase

eNOS:

Endothelial nitric oxide synthase

FMD:

Flow-mediated dilation

H2O2 :

Hydrogen peroxide

L-NAME:

NG-Nitro-l-arginine methyl ester

mt:

Mitochondrial

MitoPY1:

Mitochondria peroxy yellow 1

NO:

Nitric oxide

PBA:

Phenylboronate

PGI2 :

Prostacyclin

ROS:

Reactive oxygen species

References

  1. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165. doi:10.1007/3540528806_4

    CAS  PubMed  Google Scholar 

  2. Beyer AM, Durand MJ, Hockenberry J, Gamblin TC, Phillips SA, Gutterman DD (2014) An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. Am J Physiol Heart Circ Physiol 307:H1587–H1593. doi:10.1152/ajpheart.00557.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparii M, Rokkas CK, Santos JH, Priel E, Gutterman DD (2015) Critical role for telomerase in the mechanism of flow mediated dilation in the human microcirculation. Circ Res. doi:10.1161/circresaha.115.307918

    PubMed  Google Scholar 

  4. Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, Gutterman DD (2016) critical role for telomerase in the mechanism of flow-mediated dilation in the human microcirculation. Circ Res 118:856–866. doi:10.1161/CIRCRESAHA.115.307918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. doi:10.1006/abbi.1996.0178

    Article  CAS  PubMed  Google Scholar 

  6. Charpie JR, Schreur KD, Papadopoulos SM, Webb RC (1994) Endothelium dependency of contractile activity differs in infant and adult vertebral arteries. J Clin Invest 93:1339. doi:10.1172/JCI117093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chilian WM, Eastham CL, Marcus ML (1986) Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol Heart Circ Physiol 251:H779–H788

    CAS  Google Scholar 

  8. Cooper A, Heagerty AM (1998) Endothelial dysfunction in human intramyocardial small arteries in atherosclerosis and hypercholesterolemia. Am J Physiol Heart Circ Physiol 275:H1482–H1488

    CAS  Google Scholar 

  9. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265. doi:10.1016/S0735-1097(01)01746-6

    Article  PubMed  Google Scholar 

  10. Csiszar A, Ungvari Z, Edwards JG, Kaminski P, Wolin MS, Koller A, Kaley G (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90:1159–1166. doi:10.1161/01.RES.0000020401.61826.EA

    Article  CAS  PubMed  Google Scholar 

  11. DelloStritto DJ, Connell PJ, Dick GM, Fancher IS, Klarich B, Fahmy JN, Kang PT, Chen YR, Damron DS, Thodeti CK, Bratz IN (2016) Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction. Basic Res Cardiol 111:21. doi:10.1007/s00395-016-0539-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639. doi:10.1021/ja802355u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Durand MJ, Phillips SA, Widlansky ME, Otterson MF, Gutterman DD (2014) The vascular renin-angiotensin system contributes to blunted vasodilation induced by transient high pressure in human adipose microvessels. Am J Physiol Heart Circ Physiol 307:H25–H32. doi:10.1152/ajpheart.00055.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Durand MJ, Zinkevich NS, Riedel M, Gutterman DD, Nasci VL, Salato VK, Hijjawi JB, Reuben CF, North PE, Beyer AM (2016) Vascular actions of angiotensin 1–7 in the human microcirculation novel role for telomerase. Arterioscler Thromb Vasc Biol 36:1254–1262. doi:10.1161/ATVBAHA.116.307518

    Article  CAS  PubMed  Google Scholar 

  15. Feigl E (1983) Coronary physiology. Physiol Rev 63:1–205

    CAS  PubMed  Google Scholar 

  16. Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Gutterman DD (2014) Ceramide changes the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation. Circ Res 115:525–532. doi:10.1161/CIRCRESAHA.115.303881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerhard M, Roddy M-A, Creager SJ, Creager MA (1996) Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension 27:849–853. doi:10.1161/01.HYP.27.4.849

    Article  CAS  PubMed  Google Scholar 

  18. Gray C, Harrison CJ, Segovia SA, Reynolds CM, Vickers MH (2015) Maternal salt and fat intake causes hypertension and sustained endothelial dysfunction in fetal, weanling and adult male resistance vessels. Sci Rep 5:9753–9761. doi:10.1038/srep0975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guarini G, Kiyooka T, Ohanyan V, Pung YF, Marzilli M, Chen YR, Chen CL, Kang PT, Hardwick JP, Kolz CL, Yin L, Wilson GL, Shokolenko I, Dobson JG Jr, Fenton R, Chilian WM (2016) Impaired coronary metabolic dilation in the metabolic syndrome is linked to mitochondrial dysfunction and mitochondrial DNA damage. Basic Res Cardiol 111:29. doi:10.1007/s00395-016-0547-4

    Article  PubMed  Google Scholar 

  20. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106:653–658. doi:10.1161/01.CIR.0000025404.78001.D8

    Article  PubMed  Google Scholar 

  21. Hink U, Münzel T (2006) COX-2, another important player in the nitric oxide-endothelin cross-talk good news for COX-2 inhibitors? Circ Res 98:1344–1346. doi:10.1161/01.RES.0000228471.38761.93

    Article  CAS  PubMed  Google Scholar 

  22. Kuo L, Arko F, Chilian WM, Davis MJ (1993) Coronary venular responses to flow and pressure. Circ Res 72:607–615. doi:10.1161/01.RES.72.3.607

    Article  CAS  PubMed  Google Scholar 

  23. Kuo L, Chilian WM, Davis MJ (1991) Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am J Physiol Heart Circ Physiol 261:H1706–H1715

    CAS  Google Scholar 

  24. Larsen FJ, Schiffer TA, Weitzberg E, Lundberg JO (2012) Regulation of mitochondrial function and energetics by reactive nitrogen oxides. Free Radic Biol Med 53:1919–1928. doi:10.1016/j.freeradbiomed.2012.08.580

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD (2011) H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res 108:566–573. doi:10.1161/CIRCRESAHA.110.237636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller FJ, Dellsperger KC, Gutterman DD (1998) Pharmacologic activation of the human coronary microcirculation in vitro: endothelium-dependent dilation and differential responses to acetylcholine. Cardiovasc Res 38:744–750. doi:10.1016/S0008-6363(98)00035-2

    Article  CAS  PubMed  Google Scholar 

  27. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD (2003) Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92:e31–e40. doi:10.1161/01.RES.0000054200.44505.AB

    Article  CAS  PubMed  Google Scholar 

  28. Neunteufl T, Katzenschlager R, Hassan A, Klaar U, Schwarzacher S, Glogar D, Bauer P, Weidinger F (1997) Systemic endothelial dysfunction is related to the extent and severity of coronary artery disease. Atherosclerosis 129:111–118. doi:10.1016/S0021-9150(96)06018-2

    Article  CAS  PubMed  Google Scholar 

  29. Ohsaki Y, O’Connor P, Mori T, Ryan RP, Dickinson BC, Chang CJ, Lu Y, Ito S, Cowley AW Jr (2012) Increase of sodium delivery stimulates the mitochondrial respiratory chain H2O2 production in rat renal medullary thick ascending limb. Am J Physiol Renal Physiol 302:F95–F102. doi:10.1152/ajprenal.00469.2011

    Article  CAS  PubMed  Google Scholar 

  30. Pinder AG, Pittaway E, Morris K, James PE (2009) Nitrite directly vasodilates hypoxic vasculature via nitric oxide-dependent and-independent pathways. Br J Pharmacol 157:1523–1530. doi:10.1111/j.1476-5381.2009.00340.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92. doi:10.1006/abbi.1996.0146

    Article  CAS  PubMed  Google Scholar 

  32. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90:7240–7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shamim-Uzzaman QA, Pfenninger D, Kehrer C, Chakrabarti A, Kacirotti N, Rubenfire M, Brook R, Rajagopalan S (2002) Altered cutaneous microvascular responses to reactive hyperaemia in coronary artery disease: a comparative study with conduit vessel responses. Clin Sci 103:267–273. doi:10.1042/cs1030267

    Article  PubMed  Google Scholar 

  34. Shimokawa H (2010) Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflugers Arch EJP 59:915–922. doi:10.1007/s00424-010-0790-8

    Article  Google Scholar 

  35. Sun D, Liu H, Yan C, Jacobson A, Ojaimi C, Huang A, Kaley G (2006) COX-2 contributes to the maintenance of flow-induced dilation in arterioles of eNOS-knockout mice. Am J Physiol Heart Circ Physiol 291:H1429–H1435. doi:10.1152/ajpheart.01130.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081. doi:10.1161/01.HYP.0000100443.09293.4F

    Article  CAS  PubMed  Google Scholar 

  37. Targonski PV, Bonetti PO, Pumper GM, Higano ST, Holmes DR Jr, Lerman A (2003) Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events. Circulation 107:2805. doi:10.1161/01.CIR.0000072765.93106.EE

    Article  PubMed  Google Scholar 

  38. Toda N (2012) Age-related changes in endothelial function and blood flow regulation. Pharmacol Ther 133:159–176. doi:10.1016/j.pharmthera.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  39. van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SA, Voskuil M, Henriques JP, Koch KT, de Winter RJ, Spaan JA, Siebes M, Tijssen JG, Meuwissen M, Piek JJ (2014) Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv 7:301–311. doi:10.1161/CIRCINTERVENTIONS.113.001049

    Article  PubMed  Google Scholar 

  40. Wojakowski W, Gmiński J (2001) Plasma levels of von Willebrand factor, endothelin-1, prostacyclin and thromboxane in children from families with high risk of premature coronary artery disease. Scand J Clin Lab Invest 61:317–323. doi:10.1080/00365510152379058

    Article  CAS  PubMed  Google Scholar 

  41. Wu C, Huang RT, Kuo CH, Kumar S, Kim CW, Lin YC, Chen YJ, Birukova A, Birukov KG, Dulin NO, Civelek M, Lusis AJ, Loyer X, Tedgui A, Dai G, Jo H, Fang Y (2015) Mechanosensitive PPAP2B regulates endothelial responses to atherorelevant hemodynamic forces. Circ Res 117:e41–e53. doi:10.1161/CIRCRESAHA.117.306457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92:652–662. doi:10.1172/JCI116634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the surgeons and nurses at Froedtert Hospital, the Division of Cardiothoracic Surgery at the Medical College of Wisconsin, the Cardiothoracic Surgery Division at the Zablocki Veterans Affairs Medical Center in Milwaukee, the Children’s Hospital of Wisconsin, the Aurora Medical Group Cardiovascular and Thoracic Surgery, Cardiothoracic Surgery Group of Milwaukee, the Wheaton Hospital Group including St. Joseph’s, The Wisconsin Heart Hospital, Elmbrook Memorial of Brookfield, and The Wisconsin Donor Network for providing tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Beyer.

Ethics declarations

Funding

This work was supported by National Institutes of Health Grants R01-HL-113612 (to D. D. Gutterman), R21-OD-018306 (to A. M. Beyer). We received support from the Clinical and Translational Science Award (CTSA) program of NCATS for writing assistance (Glenn Krakower Grant 8UL1TR000055).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, A.M., Zinkevich, N., Miller, B. et al. Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol 112, 5 (2017). https://doi.org/10.1007/s00395-016-0594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0594-x

Keywords

Navigation