Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation


Voltage-gated Kv1.1 channels encoded by the Kcna1 gene are traditionally regarded as being neural-specific with no known expression or intrinsic functional role in the heart. However, recent studies in mice reveal low-level Kv1.1 expression in heart and cardiac abnormalities associated with Kv1.1-deficiency suggesting that the channel may have a previously unrecognized cardiac role. Therefore, this study tests the hypothesis that Kv1.1 channels are associated with arrhythmogenesis and contribute to intrinsic cardiac function. In intra-atrial burst pacing experiments, Kcna1-null mice exhibited increased susceptibility to atrial fibrillation (AF). The atria of Kcna1-null mice showed minimal Kv1 family ion channel remodeling and fibrosis as measured by qRT-PCR and Masson’s trichrome histology, respectively. Using RT-PCR, immunocytochemistry, and immunoblotting, KCNA1 mRNA and protein were detected in isolated mouse cardiomyocytes and human atria for the first time. Patients with chronic AF (cAF) showed no changes in KCNA1 mRNA levels relative to controls; however, they exhibited increases in atrial Kv1.1 protein levels, not seen in paroxysmal AF patients. Patch-clamp recordings of isolated human atrial myocytes revealed significant dendrotoxin-K (DTX-K)-sensitive outward current components that were significantly increased in cAF patients, reflecting a contribution by Kv1.1 channels. The concomitant increases in Kv1.1 protein and DTX-K-sensitive currents in atria of cAF patients suggest that the channel contributes to the pathological mechanisms of persistent AF. These findings provide evidence of an intrinsic cardiac role of Kv1.1 channels and indicate that they may contribute to atrial repolarization and AF susceptibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Balse E, El-Haou S, Dillanian G, Dauphin A, Eldstrom J, Fedida D, Coulombe A, Hatem SN (2009) Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proc Natl Acad Sci 106:14681–14686. doi:10.1073/pnas.0902809106

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. 2.

    Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80. doi:10.1038/384078a0

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Boycott HE, Barbier CSM, Eichel CA, Costa KD, Martins RP, Louault F, Dilanian G, Coulombe A, Hatem SN, Balse E (2013) Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci 110:E3955–E3964. doi:10.1073/pnas.1309896110

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. 4.

    Brundel BJ, Van Gelder IC, Henning RH, Tieleman RG, Tuinenburg AE, Wietses M, Grandjean JG, Van Gilst WH, Crijns HJ (2001) Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103:684–690. doi:10.1161/01.CIR.103.5.684

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG, Wilde AA, Van Gilst WH, Crijns HJ (2001) Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol 37:926–932. doi:10.1016/S0735-1097(00)01195-5

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Christ T, Wettwer E, Voigt N, Hála O, Radicke S, Matschke K, Várro A, Dobrev D, Ravens U (2008) Pathology-specific effects of the IKur/Ito/IK, ACh blocker AVE0118 on ion channels in human chronic atrial fibrillation. Br J Pharmacol 154:1619–1630. doi:10.1038/bjp.2008.209

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. 7.

    Courtemanche M, Ramirez RJ, Nattel S (1999) Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc Res 42:477–489. doi:10.1016/S0008-6363(99)00034-6

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Dahab GM, Kheriza MM, El-Beltagi HM, Fouda A-MM, El-Din OAS (2004) Digital quantification of fibrosis in liver biopsy sections: description of a new method by Photoshop software. J Gastroenterol Hepatol 19:78–85. doi:10.1111/j.1440-1746.2004.03183.x

    Article  PubMed  Google Scholar 

  9. 9.

    Dobrev D, Ravens U (2003) Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol 98:137–148. doi:10.1007/s00395-003-0409-8

    PubMed  Google Scholar 

  10. 10.

    Glasscock E, Qian J, Kole MJ, Noebels JL (2012) Transcompartmental reversal of single fibre hyperexcitability in juxtaparanodal Kv1.1-deficient vagus nerve axons by activation of nodal KCNQ channels. J Physiol 590:3913–3926. doi:10.1113/jphysiol.2012.235606

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL (2010) Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci 30:5167–5175. doi:10.1523/JNEUROSCI.5591-09.2010

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. 12.

    Harrell MD, Harbi S, Hoffman JF, Zavadil J, Coetzee WA (2007) Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol Genomics 28:273–283. doi:10.1152/physiolgenomics.00163.2006

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Heijman J, Dobrev D (2015) Irregular rhythm and atrial metabolism are key for the evolution of proarrhythmic atrial remodeling in atrial fibrillation. Basic Res Cardiol 110:498. doi:10.1007/s00395-015-0498-1

    Article  Google Scholar 

  14. 14.

    Leoni A-L, Marionneau C, Demolombe S, Le Bouter S, Mangoni ME, Escande D, Charpentier F (2005) Chronic heart rate reduction remodels ion channel transcripts in the mouse sinoatrial node but not in the ventricle. Physiol Genomics 24:4–12. doi:10.1152/physiolgenomics.00161.2005

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Li N, Wang T, Wang W, Cutler MJ, Wang Q, Voigt N, Rosenbaum DS, Dobrev D, Wehrens XHT (2012) Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ Res 110:465–470. doi:10.1161/CIRCRESAHA.111.253229

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  16. 16.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods San Diego Calif 25:402–408. doi:10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  17. 17.

    London B (2001) Cardiac arrhythmias: from (transgenic) mice to men. J Cardiovasc Electrophysiol 12:1089–1091. doi:10.1046/j.1540-8167.2001.01089.x

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    London B, Guo W, Pan Xh, Lee JS, Shusterman V, Rocco CJ, Logothetis DA, Nerbonne JM, Hill JA (2001) Targeted replacement of KV1.5 in the mouse leads to loss of the 4-aminopyridine-sensitive component of I(K, slow) and resistance to drug-induced qt prolongation. Circ Res 88:940–946. doi:10.1161/hh0901.090929

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Mahida S, Lubitz SA, Rienstra M, Milan DJ, Ellinor PT (2011) Monogenic atrial fibrillation as pathophysiological paradigms. Cardiovasc Res 89:692–700. doi:10.1093/cvr/cvq381

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. 20.

    Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234. doi:10.1113/jphysiol.2004.074047

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  21. 21.

    Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226. doi:10.1038/415219a

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Nattel S, Burstein B, Dobrev D (2008) Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1:62–73. doi:10.1161/CIRCEP.107.754564

    Article  PubMed  Google Scholar 

  23. 23.

    Nattel S, Maguy A, Le Bouter S, Yeh Y-H (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456. doi:10.1152/physrev.00014.2006

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253. doi:10.1152/physrev.00002.2005

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Olson TM, Alekseev AE, Liu XK, Park S, Zingman LV, Bienengraeber M, Sattiraju S, Ballew JD, Jahangir A, Terzic A (2006) Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 15:2185–2191. doi:10.1093/hmg/ddl143

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR, Ackerman MJ, Wehrens XHT (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123:979–988. doi:10.1161/CIRCULATIONAHA.110.006437

    PubMed Central  Article  PubMed  Google Scholar 

  27. 27.

    Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369:289–294. doi:10.1038/369289a0

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Reynolds JO, Chiang DY, Wang W, Beavers DL, Dixit SS, Skapura DG, Landstrom AP, Song L-S, Ackerman MJ, Wehrens XHT (2013) Junctophilin-2 is necessary for T-tubule maturation during mouse heart development. Cardiovasc Res 100:44–53. doi:10.1093/cvr/cvt133

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. 29.

    Robbins CA, Tempel BL (2012) Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia 53(Suppl 1):134–141. doi:10.1111/j.1528-1167.2012.03484.x

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Roberds SL, Tamkun MM (1991) Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci USA 88:1798–1802. doi:10.1073/pnas.88.5.1798

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. 31.

    Robertson B, Owen D, Stow J, Butler C, Newland C (1996) Novel effects of dendrotoxin homologues on subtypes of mammalian Kv1 potassium channels expressed in Xenopus oocytes. FEBS Lett 383:26–30. doi:10.1016/0014-5793(96)00211-6

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Roeper J, Sewing S, Zhang Y, Sommer T, Wanner SG, Pongs O (1998) NIP domain prevents N-type inactivation in voltage-gated potassium channels. Nature 391:390–393. doi:10.1038/34916

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83. doi:10.1038/384080a0

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Sinner MF, Ellinor PT, Meitinger T, Benjamin EJ, Kääb S (2011) Genome-wide association studies of atrial fibrillation: past, present, and future. Cardiovasc Res 89:701–709. doi:10.1093/cvr/cvr001

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  36. 36.

    Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL (1998) Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20:809–819

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Sood S, Chelu MG, van Oort RJ, Skapura D, Santonastasi M, Dobrev D, Wehrens XHT (2008) Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation. Heart Rhythm 5:1047–1054. doi:10.1016/j.hrthm.2008.03.030

    PubMed Central  Article  PubMed  Google Scholar 

  38. 38.

    Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 8:3235–3244

    PubMed Central  PubMed  Google Scholar 

  39. 39.

    Tamkun MM, Knoth KM, Walbridge JA, Kroemer H, Roden DM, Glover DM (1991) Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J Off Publ Fed Am Soc Exp Biol 5:331–337

    CAS  Google Scholar 

  40. 40.

    Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Turnow K, Metzner K, Cotella D, Morales MJ, Schaefer M, Christ T, Ravens U, Wettwer E, Kämmerer S (2015) Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito. Basic Res Cardiol 110:5. doi:10.1007/s00395-014-0457-2

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XHT, Nattel S, Dobrev D (2014) Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129:145–156. doi:10.1161/CIRCULATIONAHA.113.006641

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  43. 43.

    Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XHT, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+ -Ca2+ exchanger function underlie delayed after depolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. doi:10.1161/CIRCULATIONAHA.111.067306

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Voigt N, Makary S, Nattel S, Dobrev D (2010) Voltage-clamp-based methods for the detection of constitutively active acetylcholine-gated I(K, ACh) channels in the diseased heart. Methods Enzymol 484:653–675. doi:10.1016/B978-0-12-381298-8.00032-0

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Voigt N, Trausch A, Knaut M, Matschke K, Varró A, Van Wagoner DR, Nattel S, Ravens U, Dobrev D (2010) Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3:472–480. doi:10.1161/CIRCEP.110.954636

    Article  PubMed  Google Scholar 

  46. 46.

    Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85:428–436

    Article  PubMed  Google Scholar 

  47. 47.

    Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 121:2955–2968. doi:10.1172/JCI46315

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  48. 48.

    Wang FC, Bell N, Reid P, Smith LA, McIntosh P, Robertson B, Dolly JO (1999) Identification of residues in dendrotoxin K responsible for its discrimination between neuronal K+ channels containing Kv1.1 and 1.2 alpha subunits. Eur J Biochem FEBS 263:222–229

    CAS  Article  Google Scholar 

  49. 49.

    Wang FC, Parcej DN, Dolly JO (1999) Alpha subunit compositions of Kv1.1-containing K+ channel subtypes fractionated from rat brain using dendrotoxins. Eur J Biochem FEBS 263:230–237

    CAS  Article  Google Scholar 

  50. 50.

    Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Workman AJ, Kane KA, Rankin AC (2001) The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52:226–235

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Yang Y, Li J, Lin X, Yang Y, Hong K, Wang L, Liu J, Li L, Yan D, Liang D, Xiao J, Jin H, Wu J, Zhang Y, Chen Y-H (2009) Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation. J Hum Genet 54:277–283. doi:10.1038/jhg.2009.26

    CAS  Article  PubMed  Google Scholar 

Download references


The authors thank Ramona Nagel and Katrin Kupser for excellent technical assistance. This work was supported by grants from the National Institutes of Health (HL107641 to EG; HL089598, HL091947, and HL117641 to X.H.T.W.; NS076916 to J.L.N.), the Muscular Dystrophy Association (X.H.T.W.), American Heart Association (13EIA14560061 to X.H.T.W.), the Deutsche Forschungsgemeinschaft (Do 769/1-1-3 to D.D.), the German Federal Ministry of Education and Research through DZHK (German Centre for Cardiovascular Research to D.D.), the European Union through the European Network for Translational Research in Atrial Fibrillation (EUTRAF, FP7-HEALTH-2010, large-scale integrating project, Proposal No. 261057 to D.D), and Fondation Leducq (‘Alliance for CaMKII Signaling in Heart’ to X.H.T.W. and ‘European North-American Atrial Fibrillation Research Alliance’ to D.D.).

Author information



Corresponding author

Correspondence to Edward Glasscock.

Ethics declarations

Conflicts of interest


Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 294 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glasscock, E., Voigt, N., McCauley, M.D. et al. Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation. Basic Res Cardiol 110, 47 (2015).

Download citation


  • Voltage-gated potassium channels
  • Atrial fibrillation
  • Dendrotoxin-K
  • Kcna1
  • Kv1.1