Skip to main content
Log in

Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Diabetic patients suffer augmented severity of myocardial infarction. Excessive activation of the mammalian target of rapamycin (mTOR) and decreased activation of STAT3 are implicated in diabetic complications. Considering the potent cardioprotective effect of mTOR inhibitor, rapamycin, we hypothesized that reperfusion therapy with rapamycin would reduce infarct size in the diabetic hearts through STAT3 signaling. Hearts from adult male db/db or wild type (WT) C57 mice were isolated and subjected to 30 min of normothermic global ischemia and 60 min of reperfusion in Langendorff mode. Rapamycin (100 nM) was infused at the onset of reperfusion. Myocardial infarct size (IS) was significantly reduced in rapamycin-treated mice (13.3 ± 2.4 %) compared to DMSO vehicle control (35.9 ± 0.9 %) or WT mice (27.7 ± 1.1 %). Rapamycin treatment restored phosphorylation of STAT3 and enhanced AKT phosphorylation (target of mTORC2), but significantly reduced ribosomal protein S6 phosphorylation (target of mTORC1) in the diabetic heart. To determine the cause and effect relationship of STAT3 in cardioprotection, inducible cardiac-specific STAT3-deficient (MCM TG:STAT3flox/flox) and WT mice (MCM TG:STAT3flox/flox) were made diabetic by feeding high fat diet (HFD). Rapamycin given at reperfusion reduced IS in WT mice but not in STAT3-deficient mice following I/R. Moreover, cardiomyocytes isolated from HFD-fed WT mice showed resistance against necrosis (trypan blue staining) and apoptosis (TUNEL assay) when treated with rapamycin during reoxygenation following simulated ischemia. Such protection was absent in cardiomyocytes from HFD-fed STAT3-deficient mice. STAT3 signaling plays critical role in reducing IS and attenuates cardiomyocyte death following reperfusion therapy with rapamycin in diabetic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T (2012) Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 303:H75–H85. doi:10.1152/ajpheart.00241.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Baumgart D, Klauss V, Baer F, Hartmann F, Drexler H, Motz W, Klues H, Hofmann S, Volker W, Pfannebecker T, Stoll HP, Nickenig G (2007) One-year results of the SCORPIUS study: a German multicenter investigation on the effectiveness of sirolimus-eluting stents in diabetic patients. J Am Coll Cardiol 50:1627–1634. doi:10.1016/j.jacc.2007.07.035

    Article  PubMed  Google Scholar 

  3. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131–135. doi:10.1016/j.yjmcc.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  4. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Boengler K, Ungefug E, Heusch G, Schulz R (2013) The STAT3 inhibitor stattic impairs cardiomyocyte mitochondrial function through increased reactive oxygen species formation. Curr Pharm Des 19:6890–6895. doi:10.2174/138161281939131127115940

    Article  CAS  PubMed  Google Scholar 

  6. Bolli R, Stein AB, Guo YR, Wang OL, Rokosh G, Dawn B, Molkentin JD, Sanganalmath SK, Zhu YQ, Xuan YT (2011) A murine model of inducible, cardiac-specific deletion of STAT3: its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J Mol Cell Cardiol 50:589–597. doi:10.1016/j.yjmcc.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  7. Boluyt MO, Zheng JS, Younes A, Long X, O’Neill L, Silverman H, Lakatta EG, Crow MT (1997) Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res 81:176–186. doi:10.1161/01.RES.81.2.176

    Article  CAS  PubMed  Google Scholar 

  8. Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC (2014) Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem 289:4145–4160. doi:10.1074/jbc.M113.521062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Das A, Salloum FN, Durrant D, Ockaili R, Kukreja RC (2012) Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway. J Mol Cell Cardiol 53:858–869. doi:10.1016/j.yjmcc.2012.09.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Das A, Salloum FN, Xi L, Rao YJ, Kukreja RC (2009) ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol 296:H1236–H1243. doi:10.1152/ajpheart.00100.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280:12944–12955. doi:10.1074/jbc.M404706200

    Article  CAS  PubMed  Google Scholar 

  12. Das A, Xi L, Kukreja RC (2008) Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem 283:29572–29585. doi:10.1074/jbc.M801547200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. de Waha A, Dibra A, Kufner S, Baumgart D, Sabate M, Maresta A, Schomig A, Kastrati A (2011) Long-term outcome after sirolimus-eluting stents versus bare metal stents in patients with diabetes mellitus: a patient-level meta-analysis of randomized trials. Clin Res Cardiol 100:561–570. doi:10.1007/s00392-010-0278-8

    Article  CAS  PubMed  Google Scholar 

  14. Drake JC, Alway SE, Hollander JM, Williamson DL (2010) AICAR treatment for 14 days normalizes obesity-induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle. Am J Physiol Regul Integr Comp Physiol 299:R1546–R1554. doi:10.1152/ajpregu.00337.2010

    Article  CAS  PubMed  Google Scholar 

  15. Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH (2011) Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology 114:1364–1372. doi:10.1097/ALN.0b013e31820efafd

    Article  CAS  PubMed  Google Scholar 

  16. Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z, Yi D (2012) The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 107:263. doi:10.1007/s00395-012-0263-7

    Article  PubMed  Google Scholar 

  17. Fuglesteg BN, Suleman N, Tiron C, Kanhema T, Lacerda L, Andreasen TV, Sack MN, Jonassen AK, Mjos OD, Opie LH, Lecour S (2008) Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol 103:444–453. doi:10.1007/s00395-008-0728-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol 295:H1649–H1656. doi:10.1152/ajpheart.00692.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gross ER, Hsu AK, Gross GJ (2006) The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol 291:H827–H834. doi:10.1152/ajpheart.00003.2006

    Article  CAS  PubMed  Google Scholar 

  20. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146. doi:10.1161/01.CIR.100.10.1134

    Article  CAS  PubMed  Google Scholar 

  21. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi:10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  22. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  23. Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. doi:10.1161/CIRCRESAHA.111.255604

    Article  CAS  PubMed  Google Scholar 

  24. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Podewski E, Poli V, Schneider MD, Schulz R, Park JK, Wollert KC, Drexler H (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195. doi:10.1161/01.RES.0000134921.50377.61

    Article  CAS  PubMed  Google Scholar 

  25. Howell JJ, Manning BD (2011) mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22:94–102. doi:10.1016/j.tem.2010.12.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, Ji L, Iwamoto Y, Li E, Schneider M, Russell KS, Fu XY (2003) Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA 100:12929–12934. doi:10.1073/pnas.2134694100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, Warltier DC (2001) Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol 280:H1744–H1750

    CAS  PubMed  Google Scholar 

  28. Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481. doi:10.1210/en.2004-0921

    Article  CAS  PubMed  Google Scholar 

  29. Khan S, Salloum F, Das A, Xi L, Vetrovec GW, Kukreja RC (2006) Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 41:256–264. doi:10.1016/j.yjmcc.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  30. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643. doi:10.1126/science.1215135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Li H, Liu Z, Wang J, Wong GT, Cheung CW, Zhang L, Chen C, Xia Z, Irwin MG (2013) Susceptibility to myocardial ischemia reperfusion injury at early stage of type 1 diabetes in rats. Cardiovasc Diabetol 12:133. doi:10.1186/1475-2840-12-133

    Article  PubMed Central  PubMed  Google Scholar 

  32. Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, Weiss RM, Yang B, Rokita AG, Maier LS, Efimov IR, Hund TJ, Anderson ME (2013) Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest 123:1262–1274. doi:10.1172/JCI65268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mak KH, Moliterno DJ, Granger CB, Miller DP, White HD, Wilcox RG, Califf RM, Topol EJ (1997) Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I Investigators. Global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries. J Am Coll Cardiol 30:171–179. doi:10.1016/S0735-1097(97)00118-6

    Article  CAS  PubMed  Google Scholar 

  34. McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109:3050–3055. doi:10.1161/01.CIR.0000130641.08705.45

    Article  CAS  PubMed  Google Scholar 

  35. Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–2287. doi:10.1200/JCO.2008.20.0766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Negoro S, Kunisada K, Tone E, Funamoto M, Oh H, Kishimoto T, Yamauchi-Takihara K (2000) Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 47:797–805. doi:10.1016/S0008-6363(00)00138-3

    Article  CAS  PubMed  Google Scholar 

  37. Obana M, Miyamoto K, Murasawa S, Iwakura T, Hayama A, Yamashita T, Shiragaki M, Kumagai S, Miyawaki A, Takewaki K, Matsumiya G, Maeda M, Yoshiyama M, Nakayama H, Fujio Y (2012) Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am J Physiol Heart Circ Physiol 303:H569–H577. doi:10.1152/ajpheart.00060.2012

    Article  CAS  PubMed  Google Scholar 

  38. Park SY, Cho YR, Finck BN, Kim HJ, Higashimori T, Hong EG, Lee MK, Danton C, Deshmukh S, Cline GW, Wu JJ, Bennett AM, Rothermel B, Kalinowski A, Russell KS, Kim YB, Kelly DP, Kim JK (2005) Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver. Diabetes 54:2514–2524. doi:10.2337/diabetes.54.9.2514

    Article  CAS  PubMed  Google Scholar 

  39. Ranieri SC, Fusco S, Panieri E, Labate V, Mele M, Tesori V, Ferrara AM, Maulucci G, De SM, Martorana GE, Galeotti T, Pani G (2010) Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance. Proc Natl Acad Sci USA 107:13420–13425. doi:10.1073/pnas.1008647107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168. doi:10.1016/j.molcel.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  41. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670. doi:10.1161/01.CIR.0000057979.36322.88

    Article  CAS  PubMed  Google Scholar 

  42. Sung MM, Koonen DP, Soltys CL, Jacobs RL, Febbraio M, Dyck JR (2011) Increased CD36 expression in middle-aged mice contributes to obesity-related cardiac hypertrophy in the absence of cardiac dysfunction. J Mol Med (Berl) 89:459–469. doi:10.1007/s00109-010-0720-4

    Article  CAS  Google Scholar 

  43. Tian Y, Zhang W, Xia D, Modi P, Liang D, Wei M (2011) Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway. J Biomed Sci 18:53. doi:10.1186/1423-0127-18-53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Turdi S, Kandadi MR, Zhao J, Huff AF, Du M, Ren J (2011) Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 50:712–722. doi:10.1016/j.yjmcc.2010.12.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. doi:10.1126/science.1164551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484. doi:10.1016/j.cell.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  47. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 98:9050–9055. doi:10.1073/pnas.161283798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  49. Zhang D, Contu R, Latronico MV, Zhang J, Rizzi R, Catalucci D, Miyamoto S, Huang K, Ceci M, Gu Y, Dalton ND, Peterson KL, Guan KL, Brown JH, Chen J, Sonenberg N, Condorelli G (2010) MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 120:2805–2816. doi:10.1172/JCI43008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health R37 HL051045, R01 HL079424, R01 HL093685, and R01 HL118808 (RCK), the American Heart Association 10SDG3770011 and 14GRNT20010003 (FNS), and A. D. Williams’ Fund of Virginia Commonwealth University Grant UL1RR031990 (AD).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindita Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Salloum, F.N., Filippone, S.M. et al. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol 110, 31 (2015). https://doi.org/10.1007/s00395-015-0486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0486-5

Keywords

Navigation