Skip to main content
Log in

Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Brain natriuretic peptide (BNP) contributes to heart formation during embryogenesis. After birth, despite a high number of studies aimed at understanding by which mechanism(s) BNP reduces myocardial ischemic injury in animal models, the actual role of this peptide in the heart remains elusive. In this study, we asked whether BNP treatment could modulate the proliferation of endogenous cardiac progenitor cells (CPCs) and/or their differentiation into cardiomyocytes. CPCs expressed the NPR-A and NPR-B receptors in neonatal and adult hearts, suggesting their ability to respond to BNP stimulation. BNP injection into neonatal and adult unmanipulated mice increased the number of newly formed cardiomyocytes (neonatal: +23 %, p = 0.009 and adult: +68 %, p = 0.0005) and the number of proliferating CPCs (neonatal: +142 %, p = 0.002 and adult: +134 %, p = 0.04). In vitro, BNP stimulated CPC proliferation via NPR-A and CPC differentiation into cardiomyocytes via NPR-B. Finally, as BNP might be used as a therapeutic agent, we injected BNP into mice undergoing myocardial infarction. In pathological conditions, BNP treatment was cardioprotective by increasing heart contractility and reducing cardiac remodelling. At the cellular level, BNP stimulates CPC proliferation in the non-infarcted area of the infarcted hearts. In the infarcted area, BNP modulates the fate of the endogenous CPCs but also of the infiltrating CD45+ cells. These results support for the first time a key role for BNP in controlling the progenitor cell proliferation and differentiation after birth. The administration of BNP might, therefore, be a useful component of therapeutic approaches aimed at inducing heart regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BNP:

Brain natriuretic peptide

BrdU:

5-Bromo-2′-deoxyuridine

CPCs:

Cardiac progenitor cells

GFP:

Green fluorescent protein

NMCs:

Non-myocyte cells

NPR-A:

Natriuretic peptide receptor A

NPR-B:

Natriuretic peptide receptor B

References

  1. Abdelalim EM, Tooyama I (2009) BNP signaling is crucial for embryonic stem cell proliferation. PLoS One 4:e5341. doi:10.1371/journal.pone.0005341

    Article  PubMed Central  PubMed  Google Scholar 

  2. Abdelalim EM, Tooyama I (2011) NPR-A regulates self-renewal and pluripotency of embryonic stem cells. Cell Death Dis 2:e127. doi:10.1038/cddis.2011.10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ahmad T, Felker GM (2012) Subcutaneous B-type natriuretic peptide for treatment of heart failure: a dying therapy reborn? J Am Coll Cardiol 60:2313–2315. doi:10.1016/j.jacc.2012.08.991

    Article  CAS  PubMed  Google Scholar 

  4. Barile L, Cerisoli F, Frati G, Gaetani R, Chimenti I, Forte E, Cassinelli L, Spinardi L, Altomare C, Kizana E, Giacomello A, Messina E, Ottolenghi S, Magli MC (2011) Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart. J Cell Mol Med 15:63–71. doi:10.1111/j.1582-4934.2009.00968.x

    Article  CAS  PubMed  Google Scholar 

  5. Becker JR, Chatterjee S, Robinson TY, Bennett JS, Panakova D, Galindo CL, Zhong L, Shin JT, Coy SM, Kelly AE, Roden DM, Lim CC, Macrae CA (2014) Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development. Development 141:335–345. doi:10.1242/dev.100370

    Article  CAS  PubMed  Google Scholar 

  6. Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270. doi:10.1016/j.cell.2009.04.060

    Article  CAS  PubMed  Google Scholar 

  7. Burley DS, Baxter GF (2007) B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Res Cardiol 102:529–541. doi:10.1007/s00395-007-0672-1

    Article  CAS  PubMed  Google Scholar 

  8. Cameron VA, Aitken GD, Ellmers LJ, Kennedy MA, Espiner EA (1996) The sites of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology 137:817–824

    CAS  PubMed  Google Scholar 

  9. Cameron VA, Ellmers LJ (2003) Minireview: natriuretic peptides during development of the fetal heart and circulation. Endocrinology 144:2191–2194

    Article  CAS  PubMed  Google Scholar 

  10. Cataliotti A, Tonne JM, Bellavia D, Martin FL, Oehler EA, Harders GE, Campbell JM, Peng KW, Russell SJ, Malatino LS, Burnett JC Jr, Ikeda Y (2011) Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation 123:1297–1305. doi:10.1161/CIRCULATIONAHA.110.981720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen HH (2007) Heart failure: a state of brain natriuretic peptide deficiency or resistance or both! J Am Coll Cardiol 49:1089–1091. doi:10.1016/j.jacc.2006.12.013

    Article  PubMed  Google Scholar 

  12. Chen HH, Glockner JF, Schirger JA, Cataliotti A, Redfield MM, Burnett JC Jr (2012) Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. J Am Coll Cardiol 60:2305–2312. doi:10.1016/j.jacc.2012.07.056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chen HH, Martin FL, Gibbons RJ, Schirger JA, Wright RS, Schears RM, Redfield MM, Simari RD, Lerman A, Cataliotti A, Burnett JC Jr (2009) Low-dose nesiritide in human anterior myocardial infarction suppresses aldosterone and preserves ventricular function and structure: a proof of concept study. Heart 95:1315–1319. doi:10.1136/hrt.2008.153916

    Article  CAS  PubMed  Google Scholar 

  14. D’Souza SP, Baxter GF (2003) B Type natriuretic peptide: a good omen in myocardial ischaemia? Heart 89:707–709

    Article  PubMed Central  PubMed  Google Scholar 

  15. Das BB, Raj S, Solinger R (2009) Natriuretic peptides in cardiovascular diseases of fetus, infants and children. Cardiovasc Hematol Agents Med Chem 7:43–51

    Article  CAS  PubMed  Google Scholar 

  16. Degeorge BR Jr, Rosenberg M, Eckstein V, Gao E, Herzog N, Katus HA, Koch WJ, Frey N, Most P (2008) BMP-2 and FGF-2 synergistically facilitate adoption of a cardiac phenotype in somatic bone marrow c-kit+/Sca-1+ stem cells. Clin Transl Sci 1:116–125. doi:10.1111/j.1752-8062.2008.00034.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dickey DM, Flora DR, Bryan PM, Xu X, Chen Y, Potter LR (2007) Differential regulation of membrane guanylyl cyclases in congestive heart failure: natriuretic peptide receptor (NPR)-B, Not NPR-A, is the predominant natriuretic peptide receptor in the failing heart. Endocrinology 148:3518–3522. doi:10.1210/en.2007-0081

    Article  CAS  PubMed  Google Scholar 

  18. George I, Morrow B, Xu K, Yi GH, Holmes J, Wu EX, Li Z, Protter AA, Oz MC, Wang J (2009) Prolonged effects of B-type natriuretic peptide infusion on cardiac remodeling after sustained myocardial injury. Am J Physiol Heart Circ Physiol 297:H708–H717. doi:10.1152/ajpheart.00661.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gorbe A, Giricz Z, Szunyog A, Csont T, Burley DS, Baxter GF, Ferdinandy P (2010) Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Res Cardiol 105:643–650. doi:10.1007/s00395-010-0097-0

    Article  CAS  PubMed  Google Scholar 

  20. Gottlieb SS, Stebbins A, Voors AA, Hasselblad V, Ezekowitz JA, Califf RM, O’Connor CM, Starling RC, Hernandez AF (2013) Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (acute study of clinical effectiveness of nesiritide and decompensated heart failure). J Am Coll Cardiol 62:1177–1183. doi:10.1016/j.jacc.2013.04.073

    Article  CAS  PubMed  Google Scholar 

  21. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    Article  PubMed  Google Scholar 

  22. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE (2011) Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 4:98–108. doi:10.1016/j.jcmg.2010.10.008

    Article  PubMed  Google Scholar 

  23. Kuhn M, Volker K, Schwarz K, Carbajo-Lozoya J, Flogel U, Jacoby C, Stypmann J, van Eickels M, Gambaryan S, Hartmann M, Werner M, Wieland T, Schrader J, Baba HA (2009) The natriuretic peptide/guanylyl cyclase—a system functions as a stress-responsive regulator of angiogenesis in mice. J Clin Invest 119:2019–2030. doi:10.1172/JCI37430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lexow J, Poggioli T, Sarathchandra P, Santini MP, Rosenthal N (2013) Cardiac fibrosis in mice expressing an inducible myocardial-specific Cre driver. Dis Model Mech 6:1470–1476. doi:10.1242/dmm.010470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li J, Loukili N, Rosenblatt-Velin N, Pacher P, Feihl F, Waeber B, Liaudet L (2013) Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS One 8:e70331. doi:10.1371/journal.pone.0070331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lyu T, Zhao Y, Zhang T, Zhou W, Yang F, Ge H, Ding S, Pu J, He B (2014) Natriuretic peptides as an adjunctive treatment for acute myocardial infarction. Int Heart J 55:8–16

    Article  CAS  PubMed  Google Scholar 

  27. Martin FL, Sangaralingham SJ, Huntley BK, McKie PM, Ichiki T, Chen HH, Korinek J, Harders GE, Burnett JC Jr (2012) CD-NP: a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. PLoS One 7:e52422. doi:10.1371/journal.pone.0052422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, Investigators P-H, Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. doi:10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  29. Moilanen AM, Rysa J, Mustonen E, Serpi R, Aro J, Tokola H, Leskinen H, Manninen A, Levijoki J, Vuolteenaho O, Ruskoaho H (2011) Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circ Heart Fail 4:483–495. doi:10.1161/CIRCHEARTFAILURE.110.958033

    Article  CAS  PubMed  Google Scholar 

  30. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. doi:10.1002/dvg.20335

    Article  CAS  PubMed  Google Scholar 

  31. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalan R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Mendez GF, Metra M, Mittal S, Oh BH, Pereira NL, Ponikowski P, Tang WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365:32–43. doi:10.1056/NEJMoa1100171

    Article  PubMed  Google Scholar 

  32. Pan Y, Zhu W, Ma J, Xin P, Han B, He Y, Wang Y, Peng T, Wei M (2011) Therapeutic effects of continuous infusion of brain natriuretic peptides on postmyocardial infarction ventricular remodelling in rats. Arch Cardiovasc Dis 104:17–28. doi:10.1016/j.acvd.2010.09.006

    Article  PubMed  Google Scholar 

  33. Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 191:341–366. doi:10.1007/978-3-540-68964-5_15

  34. Ren B, Shen Y, Shao H, Qian J, Wu H, Jing H (2007) Brain natriuretic peptide limits myocardial infarct size dependent of nitric oxide synthase in rats. Clin Chim Acta 377:83–87. doi:10.1016/j.cca.2006.08.027

    Article  CAS  PubMed  Google Scholar 

  35. Rose RA (2010) CD-NP, a chimeric natriuretic peptide for the treatment of heart failure. Curr Opin Investig Drugs 11:349–356

    CAS  PubMed  Google Scholar 

  36. Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115:1724–1733. doi:10.1172/JCI23418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Rosenblatt-Velin N, Ogay S, Felley A, Stanford WL, Pedrazzini T (2012) Cardiac dysfunction and impaired compensatory response to pressure overload in mice deficient in stem cell antigen-1. FASEB J 26:229–239. doi:10.1096/fj.11-189605

    Article  CAS  PubMed  Google Scholar 

  38. Sangaralingham SJ, Burnett JC Jr, McKie PM, Schirger JA, Chen HH (2013) Rationale and design of a randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy of B-type natriuretic Peptide for the preservation of left ventricular function after anterior myocardial infarction. J Card Fail 19:533–539. doi:10.1016/j.cardfail.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  39. Schwachtgen L, Herrmann M, Georg T, Schwarz P, Marx N, Lindinger A (2005) Reference values of NT-proBNP serum concentrations in the umbilical cord blood and in healthy neonates and children. Z Kardiol 94:399–404. doi:10.1007/s00392-005-0246-x

    Article  CAS  PubMed  Google Scholar 

  40. Scott NJ, Ellmers LJ, Lainchbury JG, Maeda N, Smithies O, Richards AM, Cameron VA (2009) Influence of natriuretic peptide receptor-1 on survival and cardiac hypertrophy during development. Biochim Biophys Acta 1792:1175–1184. doi:10.1016/j.bbadis.2009.09.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shmilovich H, Ben-Shoshan J, Tal R, Afek A, Barshack I, Maysel-Auslander S, Harats D, Keren G, George J (2009) B-type natriuretic peptide enhances vasculogenesis by promoting number and functional properties of early endothelial progenitor cells. Tissue Eng Part A 15:2741–2749. doi:10.1089/ten.TEA.2008.0414

    Article  CAS  PubMed  Google Scholar 

  42. Singh G, Kuc RE, Maguire JJ, Fidock M, Davenport AP (2006) Novel snake venom ligand dendroaspis natriuretic peptide is selective for natriuretic peptide receptor-A in human heart: downregulation of natriuretic peptide receptor-A in heart failure. Circ Res 99:183–190. doi:10.1161/01.RES.0000232322.06633.d3

    Article  CAS  PubMed  Google Scholar 

  43. Sun Y, Deng T, Lu N, Yan M, Zheng X (2010) B-type natriuretic peptide protects cardiomyocytes at reperfusion via mitochondrial calcium uniporter. Biomed Pharmacother Biomed Pharmacother 64:170–176. doi:10.1016/j.biopha.2009.09.024

    Article  CAS  Google Scholar 

  44. van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, Middleton RC, Marban E, Molkentin JD (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509:337–341. doi:10.1038/nature13309

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wu B, Jiang H, Lin R, Cui B, Wen H, Lu Z (2009) Pretreatment with B-type natriuretic peptide protects the heart from ischemia-reperfusion injury by inhibiting myocardial apoptosis. Tohoku J Exp Med 219:107–114 (JST.JSTAGE/tjem/219.107 [pii])

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marban E (2010) Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 5:e12559. doi:10.1371/journal.pone.0012559

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms Catherine Pythoud for her helpful work and Mr Alexandre Sarre for his technical expertise. This work is supported by a grant from the Swiss National Science Foundation.(PMPDB-310030-_132491).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All animal studies have been approved by the appropriate ethics committee and have, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Rosenblatt-Velin.

Additional information

C. Bielmann and S. Rignault-Clerc contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46056 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bielmann, C., Rignault-Clerc, S., Liaudet, L. et al. Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth. Basic Res Cardiol 110, 455 (2015). https://doi.org/10.1007/s00395-014-0455-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0455-4

Keywords

Navigation