Skip to main content
Log in

Multifunctional MR monitoring of the healing process after myocardial infarction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Healing of the myocardium after infarction comprises a variety of local adaptive processes which contribute to the functional outcome after the insult. Therefore, we aimed to establish a setting for concomitant assessment of regional alterations in contractile function, morphology, and immunological state to gain prognostic information on cardiac recovery after infarction. For this, mice were subjected to myocardial ischemia/reperfusion (I/R) and monitored for 28 days by cine MRI, T 2 mapping, late gadolinium enhancement (LGE), and 19F MRI. T 2 values were calculated from gated multi-echo sequences. 19F-loaded nanoparticles were injected intravenously for labelling circulating monocytes and making them detectable by 19F MRI. In-house developed software was used for regional analysis of cine loops, T 2 maps, LGE, and 19F images to correlate local wall movement, tissue damage as well as monocyte recruitment over up to 200 sectors covering the left ventricle. This enabled us to evaluate simultaneously zonal cardiac necrosis, oedema, and inflammation patterns together with sectional fractional shortening (FS) and global myocardial function. Oedema, indicated by a rise in T 2, showed a slightly better correlation with FS than LGE. Regional T 2 values increased from 19 ms to above 30 ms after I/R. In the course of the healing process oedema resolved within 28 days, while myocardial function recovered. Infiltrating monocytes could be quantitatively tracked by 19F MRI, as validated by flow cytometry. Furthermore, 19F MRI proved to yield valuable insight on the outcome of myocardial infarction in a transgenic mouse model. In conclusion, our approach permits a comprehensive surveillance of key processes involved in myocardial healing providing independent and complementary information for individual prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

I/R:

Ischemia/reperfusion

FS:

Fractional shortening

LGE:

Late gadolinium enhancement

LVM:

Left ventricular mass

MI:

Myocardial infarction

PFCs:

Perfluorocarbons

SI:

Signal intensity

References

  1. Abdel-Aty H, Cocker M, Meek C, Tyberg JV, Friedrich MG (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53:1194–1201. doi:10.1016/j.jacc.2008.10.065

    Article  PubMed  CAS  Google Scholar 

  2. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RF Jr, Arai AE (2006) Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation 113:1865–1870. doi:10.1161/CIRCULATIONAHA.105.576025

    Article  PubMed  Google Scholar 

  3. Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS, Meyer CH, Kramer CM, French BA, Epstein FH (2012) T(2)-weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med 67:201–209. doi:10.1002/mrm.22975

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blomer N, Pachel C, Hofmann U, Nordbeck P, Bauer W, Mathes D, Frey A, Bayer B, Vogel B, Ertl G, Bauersachs J, Frantz S (2013) 5-Lipoxygenase facilitates healing after myocardial infarction. Basic Res Cardiol 108:367. doi:10.1007/s00395-013-0367-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bönner F, Borg N, Burghoff S, Schrader J (2012) Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS ONE 7:e34730. doi:10.1371/journal.pone.0034730

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bönner F, Borg N, Jacoby C, Temme S, Ding Z, Flögel U, Schrader J (2013) Ecto-5′-nucleotidase on immune cells protects from adverse cardiac remodeling. Circ Res 113:301–312. doi:10.1161/CIRCRESAHA.113.300180

    Article  PubMed  Google Scholar 

  7. Bragadeesh T, Jayaweera AR, Pascotto M, Micari A, Le DE, Kramer CM, Epstein FH, Kaul S (2008) Post-ischaemic myocardial dysfunction (stunning) results from myofibrillar oedema. Heart 94:166–171. doi:10.1136/hrt.2006.102434

    Article  PubMed  CAS  Google Scholar 

  8. Bulte JW (2005) Hot spot MRI emerges from the background. Nat Biotechnol 23:945–946. doi:10.1038/nbt0805-945

    Article  PubMed  CAS  Google Scholar 

  9. Bun SS, Kober F, Jacquier A, Espinosa L, Kalifa J, Bonzi MF, Kopp F, Lalevee N, Zaffran S, Deharo JC, Cozzone PJ, Bernard M (2012) Value of in vivo T2 measurement for myocardial fibrosis assessment in diabetic mice at 11.75 T. Invest Radiol 47:319–323. doi:10.1097/RLI.0b013e318243e062

    Article  PubMed  Google Scholar 

  10. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582. doi:10.1016/S0735-1097(99)00630-0

    Article  PubMed  CAS  Google Scholar 

  11. Coolen BF, Simonis FF, Geelen T, Moonen RP, Arslan F, Paulis LE, Nicolay K, Strijkers GJ (2014) Quantitative T mapping of the mouse heart by segmented MLEV phase-cycled T preparation. Magn Reson Med 72:409–417. doi:10.1002/mrm.24952

    Article  PubMed  Google Scholar 

  12. Eitel I, Kubusch K, Strohm O, Desch S, Mikami Y, de Waha S, Gutberlet M, Schuler G, Friedrich MG, Thiele H (2011) Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation-myocardial infarction. Circ Cardiovasc Imaging 4:354–362. doi:10.1161/CIRCIMAGING.110.960500

    Article  PubMed  Google Scholar 

  13. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104. doi:10.1016/j.immuni.2013.11.019

    Article  PubMed  CAS  Google Scholar 

  14. Fishbein MC, Maclean D, Maroko PR (1978) The histopathologic evolution of myocardial infarction. Chest 73:843–849. doi:10.1378/chest.73.6.843

    Article  PubMed  CAS  Google Scholar 

  15. Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148. doi:10.1161/CIRCULATIONAHA.107.737890

    Article  PubMed  PubMed Central  Google Scholar 

  16. Flögel U, Su S, Kreideweiss I, Ding Z, Galbarz L, Fu J, Jacoby C, Witzke O, Schrader J (2011) Noninvasive detection of graft rejection by in vivo 19F MRI in the early stage. Am J Transplant 11:235–244. doi:10.1111/j.1600-6143.2010.03372.x

    Article  PubMed  Google Scholar 

  17. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173. doi:10.1161/CIRCRESAHA.111.243162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81:474–481. doi:10.1093/cvr/cvn292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Fujiu K, Nagai R (2013) Contributions of cardiomyocyte-cardiac fibroblast-immune cell interactions in heart failure development. Basic Res Cardiol 108:357. doi:10.1007/s00395-013-0357-x

    Article  PubMed  Google Scholar 

  20. Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11:56. doi:10.1186/1532-429X-11-56

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hertlein T, Sturm V, Kircher S, Basse-Lusebrink T, Haddad D, Ohlsen K, Jakob P (2011) Visualization of abscess formation in a murine thigh infection model of Staphylococcus aureus by 19F-magnetic resonance imaging (MRI). PLoS ONE 6:e18246. doi:10.1371/journal.pone.0018246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    Article  PubMed  Google Scholar 

  23. Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C (2011) 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med 65:1144–1153. doi:10.1002/mrm.22702

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108:356. doi:10.1007/s00395-013-0356-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hueper K, Zapf A, Skrok J, Pinheiro A, Goldstein TA, Zheng J, Zimmerman SL, Kamel IR, Abraham R, Wacker F, Bluemke DA, Abraham T, Vogel-Claussen J (2012) In hypertrophic cardiomyopathy reduction of relative resting myocardial blood flow is related to late enhancement, T2-signal and LV wall thickness. PLoS ONE 7:e41974. doi:10.1371/journal.pone.0041974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Jacoby C, Molojavyi A, Flögel U, Merx MW, Ding Z, Schrader J (2006) Direct comparison of magnetic resonance imaging and conductance microcatheter in the evaluation of left ventricular function in mice. Basic Res Cardiol 101:87–95. doi:10.1007/s00395-005-0542-7

    Article  PubMed  Google Scholar 

  27. Jivraj N, Phinikaridou A, Shah AM, Botnar RM (2014) Molecular imaging of myocardial infarction. Basic Res Cardiol 109:397. doi:10.1007/s00395-013-0397-2

    Article  PubMed  Google Scholar 

  28. Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET (2012) Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Invest 92:636–645. doi:10.1038/labinvest.2012.7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kleinbongard P, Schulz R, Heusch G (2011) TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16:49–69. doi:10.1007/s10741-010-9180-8

    Article  PubMed  CAS  Google Scholar 

  30. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137. doi:10.1084/jem.20111009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Ludwig A, Poller WC, Westphal K, Minkwitz S, Lattig-Tunnemann G, Metzkow S, Stangl K, Baumann G, Taupitz M, Wagner S, Schnorr J, Stangl V (2013) Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans. Basic Res Cardiol 108:328. doi:10.1007/s00395-013-0328-2

    Article  PubMed  Google Scholar 

  32. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445. doi:10.1161/CIRCULATIONAHA.109.916346

    Article  PubMed  PubMed Central  Google Scholar 

  33. Naresh NK, Xu Y, Klibanov AL, Vandsburger MH, Meyer CH, Leor J, Kramer CM, French BA, Epstein FH (2012) Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging by using T1-shortening liposomes. Radiology 264:428–435. doi:10.1148/radiol.12111863

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nicolosi GL, Golcea S, Ceconi C, Parrinello G, Decarli A, Chiariello M, Remme WJ, Tavazzi L, Ferrari R (2009) Effects of perindopril on cardiac remodelling and prognostic value of pre-discharge quantitative echocardiographic parameters in elderly patients after acute myocardial infarction: the PREAMI echo sub-study. Eur Heart J 30:1656–1665. doi:10.1093/eurheartj/ehp139

    Article  PubMed  CAS  Google Scholar 

  35. Nijveldt R, Hofman MB, Hirsch A, Beek AM, Umans VA, Algra PR, Piek JJ, van Rossum AC (2009) Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology 250:363–370. doi:10.1148/radiol.2502080739

    Article  PubMed  Google Scholar 

  36. Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55:1629–1638. doi:10.1016/j.jacc.2009.08.089

    Article  PubMed  PubMed Central  Google Scholar 

  37. Raman SV, Ambrosio G (2011) T2-cardiac magnetic resonance: has Elvis left the building? Circ Cardiovasc Imaging 4:198–200. doi:10.1161/CIRCIMAGING.111.965343

    Article  PubMed  Google Scholar 

  38. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876. doi:10.1161/01.CIR.103.6.871

    Article  PubMed  CAS  Google Scholar 

  39. Sahul ZH, Mukherjee R, Song J, McAteer J, Stroud RE, Dione DP, Staib L, Papademetris X, Dobrucki LW, Duncan JS, Spinale FG, Sinusas AJ (2011) Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging 4:381–391. doi:10.1161/CIRCIMAGING.110.961854

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schulz-Menger J, Gross M, Messroghli D, Uhlich F, Dietz R, Friedrich MG (2003) Cardiovascular magnetic resonance of acute myocardial infarction at a very early stage. J Am Coll Cardiol 42:513–518. doi:10.1016/S0735-1097(03)00717-4

    Article  PubMed  Google Scholar 

  41. Sosnovik DE, Nahrendorf M, Weissleder R (2007) Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115:2076–2086. doi:10.1161/CIRCULATIONAHA.106.658930

    Article  PubMed  Google Scholar 

  42. Spahn DR (1999) Blood substitutes. Artificial oxygen carriers: perfluorocarbon emulsions. Crit Care 3:R93–R97. doi:10.1186/cc364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Stoll M, Quentin M, Molojavyi A, Thamer V, Decking UK (2008) Spatial heterogeneity of myocardial perfusion predicts local potassium channel expression and action potential duration. Cardiovasc Res 77:489–496. doi:10.1093/cvr/cvm060

    Article  PubMed  CAS  Google Scholar 

  44. Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H, Xia N, Yan XX, Nie SF, Liu J, Zhou SF, Li JJ, Yao R, Liao MY, Tu X, Liao YH, Cheng X (2012) Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 107:232. doi:10.1007/s00395-011-0232-6

    Article  PubMed  Google Scholar 

  45. Temme S, Bönner F, Schrader J, Flögel U (2012) 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:329–343. doi:10.1002/wnan.1163

    Article  PubMed  CAS  Google Scholar 

  46. Temme S, Jacoby C, Ding Z, Bönner F, Borg N, Schrader J, Flögel U (2014) Technical Advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI. J Leukoc Biol 95:689–697. doi:10.1189/jlb.0113032

    Article  PubMed  CAS  Google Scholar 

  47. Thavendiranathan P, Walls M, Giri S, Verhaert D, Rajagopalan S, Moore S, Simonetti OP, Raman SV (2012) Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging 5:102–110. doi:10.1161/CIRCIMAGING.111.967836

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Heeswijk RB, De BJ, Kania G, Gonzales C, Blyszczuk P, Stuber M, Eriksson U, Schwitter J (2013) Selective in vivo visualization of immune-cell infiltration in a mouse model of autoimmune myocarditis by fluorine-19 cardiac magnetic resonance. Circ Cardiovasc Imaging 6:277–284. doi:10.1161/CIRCIMAGING.112.000125

    Article  PubMed  Google Scholar 

  49. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PW, D’Agostino RB (2003) Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107:1486–1491. doi:10.1161/01.CIR.0000057810.48709.F6

    Article  PubMed  CAS  Google Scholar 

  50. Westermann D, Van LS, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschope C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507. doi:10.1007/s00395-007-0673-0

    Article  PubMed  CAS  Google Scholar 

  51. Wolters M, Mohades SG, Hackeng TM, Post MJ, Kooi ME, Backes WH (2013) Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy. Invest Radiol 48:341–350. doi:10.1097/RLI.0b013e318277528c

    Article  PubMed  Google Scholar 

  52. Yang Y, Liu J, Yang Y, Cho SH, Hu TC (2011) Assessment of cell infiltration in myocardial infarction: a dose-dependent study using micrometer-sized iron oxide particles. Magn Reson Med 66:1353–1361. doi:10.1002/mrm.22890

    Article  PubMed  Google Scholar 

  53. Ye YX, Basse-Lusebrink TC, Arias-Loza PA, Kocoski V, Kampf T, Gan Q, Bauer E, Sparka S, Helluy X, Hu K, Hiller KH, Boivin-Jahns V, Jakob PM, Jahns R, Bauer WR (2013) Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging. Circulation 128:1878–1888. doi:10.1161/CIRCULATIONAHA.113.000731

    Article  PubMed  Google Scholar 

  54. Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rosch S, Klumpp S, Klingel K, Kandolf R, Helluy X, Hiller KH, Jakob PM, Sechtem U (2013) Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J 34:462–475. doi:10.1093/eurheartj/ehs366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bodo Steckel and Jutta Ziemann for excellent technical assistance. This study was supported by the Deutsche Forschungsgemeinschaft (DFG), subproject Z2 of the Sonderforschungsbereich 612 and grants SCHR 154/13-1+2.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Flögel.

Additional information

F. Bönner and C. Jacoby contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bönner, F., Jacoby, C., Temme, S. et al. Multifunctional MR monitoring of the healing process after myocardial infarction. Basic Res Cardiol 109, 430 (2014). https://doi.org/10.1007/s00395-014-0430-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0430-0

Keywords

Navigation