Abstract
Cardiac remodeling and inflammation are hallmarks of cardiac failure and correlate with outcome in patients. However, the basis for the development of both remains unclear. We have previously reported that cardiac inflammation triggers transdifferentiation of fibroblasts to myofibroblasts and therefore increase accumulation of cardiac collagen, one key pathology in cardiac remodeling. Hence, identifying key pathways for inflammation would be beneficial for patients suffering from heart failure also. Besides their well-characterized function in matrix regulation, we here investigate the role of fibroblasts in the inflammatory process. We address for the first time the role of fibroblasts as inflammatory supporter cells in heart failure. Using endomyocardial biopsies from patients with heart failure and dilated cardiomyopathy, we created a primary human cardiac fibroblast cell culture system. We found that mechanical stretch mimicking cardiac dilation in heart failure induces activation of fibroblasts and not only stimulates production of extracellular matrix but more interestingly up-regulates chemokine production and triggers typical inflammatory pathways in vitro. Moreover, the cell culture supernatant of stretched fibroblasts activates inflammatory cells and induces further recruitment of monocytes by allowing transendothelial migration into the cardiac tissue. Our findings reveal that cardiac fibroblasts provide pro-inflammatory mediators and may act as sentinel cells activated by mechanical stress. Those cells are able to recruit inflammatory cells into the cardiac tissue, a process known to aggravate outcome of patients. This might be important in different forms of heart failure and therefore may be one general mechanism specific for fibroblasts.
This is a preview of subscription content, access via your institution.








References
Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Grone HJ, Schaefer L (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284:24035–24048. doi:10.1074/jbc.M109.014266
Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280. doi:10.1007/s00441-009-0834-6
Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJ (2012) Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog 8:e1002641. doi:10.1371/journal.ppat.1002641
Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511. doi:10.1016/j.yjmcc.2009.07.015
Duerrschmid C, Crawford JR, Reineke E, Taffet GE, Trial J, Entman ML, Haudek SB (2013) TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J Mol Cell Cardiol 57:59–67. doi:10.1016/j.yjmcc.2013.01.006
Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173. doi:10.1161/CIRCRESAHA.111.243162
Fujiu K, Nagai R (2013) Contributions of cardiomyocyte-cardiac fibroblast-immune cell interactions in heart failure development. Basic Res Cardiol 108:357. doi:10.1007/s00395-013-0357-x
Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD, Chan PH, Park TS (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289:H558–H568. doi:10.1152/ajpheart.01275.2004
Hamilton TA, Ohmori Y, Tebo J (2002) Regulation of chemokine expression by anti-inflammatory cytokines. Immunol Res 25:229–245. doi:10.1385/IR:25:3:229
Hawwa RL, Hokenson MA, Wang Y, Huang Z, Sharma S, Sanchez-Esteban J (2011) IL-10 inhibits inflammatory cytokines released by fetal mouse lung fibroblasts exposed to mechanical stretch. Pediatr Pulmonol 46:640–649. doi:10.1002/ppul.21433
Hazebroek M, Dennert R, Heymans S (2012) Idiopathic dilated cardiomyopathy: possible triggers and treatment strategies. Neth Heart J 20:332–335. doi:10.1007/s12471-012-0285-7
Herum KM, Lunde IG, Skrbic B, Florholmen G, Behmen D, Sjaastad I, Carlson CR, Gomez MF, Christensen G (2013) Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress. J Mol Cell Cardiol 54:73–81. doi:10.1016/j.yjmcc.2012.11.006
Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L, Hilfiker-Kleiner D, Janssens S, Latini R, Neubauer G, Paulus WJ, Pieske B, Ponikowski P, Schroen B, Schultheiss HP, Tschope C, Van Bilsen M, Zannad F, McMurray J, Shah AM (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129. doi:10.1093/eurjhf/hfn043
Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108:356. doi:10.1007/s00395-013-0356-y
Husse B, Briest W, Homagk L, Isenberg G, Gekle M (2007) Cyclical mechanical stretch modulates expression of collagen I and collagen III by PKC and tyrosine kinase in cardiac fibroblasts. Am J Physiol Regul Integr Comp Physiol 293:R1898–R1907. doi:10.1152/ajpregu.00804.2006
Kasner M, Westermann D, Lopez B, Gaub R, Escher F, Kuhl U, Schultheiss HP, Tschope C (2011) Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol 57:977–985. doi:10.1016/j.jacc.2010.10.024
Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Bohm M (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118:639–648. doi:10.1161/CIRCULATIONAHA.108.769489
Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290. doi:10.1146/annurev-cellbio-092910-154013
Lindner D, Zietsch C, Becher PM, Schulze K, Schultheiss HP, Tschope C, Westermann D (2012) Differential expression of matrix metalloproteases in human fibroblasts with different origins. Biochem Res Int 2012:875742. doi:10.1155/2012/875742
Liu SF, Ye X, Malik AB (1999) Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation 100:1330–1337. doi:10.1161/01.CIR.100.12.1330
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262
Nastase MV, Young MF, Schaefer L (2012) Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem 60:963–975. doi:10.1369/0022155412456380
Papakrivopoulou J, Lindahl GE, Bishop JE, Laurent GJ (2004) Differential roles of extracellular signal-regulated kinase 1/2 and p38MAPK in mechanical load-induced procollagen alpha1(I) gene expression in cardiac fibroblasts. Cardiovasc Res 61:736–744. doi:10.1016/j.cardiores.2003.12.018
Spinale FG, Zile MR (2013) Integrating the myocardial matrix into heart failure recognition and management. Circ Res 113:725–738. doi:10.1161/CIRCRESAHA.113.300309
Turner NA (2011) Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiol 7:673–691. doi:10.2217/fca.11.41
Turner NA, Das A, Warburton P, O’Regan DJ, Ball SG, Porter KE (2009) Interleukin-1alpha stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 297:H1117–H1127. doi:10.1152/ajpheart.00372.2009
Udelson JE, Konstam MA (2011) Ventricular remodeling fundamental to the progression (and regression) of heart failure. J Am Coll Cardiol 57:1477–1479. doi:10.1016/j.jacc.2011.01.009
Valen G (2011) Innate immunity and remodelling. Heart Fail Rev 16:71–78. doi:10.1007/s10741-010-9187-1
van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37. doi:10.1038/nrcardio.2009.199
Wang J, Chen H, Seth A, McCulloch CA (2003) Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 285:H1871–H1881. doi:10.1152/ajpheart.00387.2003
Wang L, Pedroja BS, Meyers EE, Garcia AL, Twining SS, Bernstein AM (2012) Degradation of internalized alphavbeta5 integrin is controlled by uPAR bound uPA: effect on beta1 integrin activity and alpha-SMA stress fiber assembly. PLoS One 7:e33915. doi:10.1371/journal.pone.0033915
Westermann D, Becher PM, Lindner D, Savvatis K, Xia Y, Frohlich M, Hoffmann S, Schultheiss HP, Tschope C (2012) Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res Cardiol 107:308. doi:10.1007/s00395-012-0308-y
Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschope C (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4:44–52. doi:10.1161/CIRCHEARTFAILURE.109.931451
Westermann D, Rutschow S, Van Linthout S, Linderer A, Bucker-Gartner C, Sobirey M, Riad A, Pauschinger M, Schultheiss HP, Tschope C (2006) Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia 49:2507–2513. doi:10.1007/s00125-006-0385-2
Westermann D, Savvatis K, Lindner D, Zietsch C, Becher PM, Hammer E, Heimesaat MM, Bereswill S, Volker U, Escher F, Riad A, Plendl J, Klingel K, Poller W, Schultheiss HP, Tschope C (2011) Reduced degradation of the chemokine MCP-3 by matrix metalloproteinase-2 exacerbates myocardial inflammation in experimental viral cardiomyopathy. Circulation 124:2082–2093. doi:10.1161/CIRCULATIONAHA.111.035964
Westermann D, Savvatis K, Schultheiss HP, Tschope C (2010) Immunomodulation and matrix metalloproteinases in viral myocarditis. J Mol Cell Cardiol 48:468–473. doi:10.1016/j.yjmcc.2009.08.019
Zhang P, Su J, Mende U (2012) Cross talk between cardiac myocytes and fibroblasts: from multiscale investigative approaches to mechanisms and functional consequences. Am J Physiol Heart Circ Physiol 303:H1385–H1396. doi:10.1152/ajpheart.01167.2011
Acknowledgments
The present study was supported by the Deutsche Forschungsgemeinschaft (DFG, SFB-TR-19, TP A2) and by the Ernst und Berta Grimmke Stiftung. We thank Mareile Schröder, Nadine Orrin, Frauke Gotzhein, Katrin Hinz, Kerstin Puhl, and Georg Zingler for technical assistance.
Conflict of interest
None.
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lindner, D., Zietsch, C., Tank, J. et al. Cardiac fibroblasts support cardiac inflammation in heart failure. Basic Res Cardiol 109, 428 (2014). https://doi.org/10.1007/s00395-014-0428-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00395-014-0428-7
Keywords
- Fibrosis
- Fibroblast
- Remodeling
- Inflammation
- Heart failure