Skip to main content

Advertisement

Log in

Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Chronic activation of angiotensin II (ANGII) and matrix metalloproteinase-2 (MMP-2) during hypertension contributes to increased aortic stiffness. We studied signalling mechanisms employed by ANGII in the regulation of latent (pro-) and active forms of MMP-2 in rat aortic endothelial and smooth muscle cells, along with isolated rat aorta. Using western blotting, we demonstrate that ANGII (1 µmol/L) significantly (P < 0.01) increases pro-MMP-2 protein expression after 8 h not only in endothelial and smooth muscle cells, but also in isolated rat aorta. We demonstrate that ANGII acts via AT1 receptor-activated cell-specific pathways. In endothelial cells, the JNK1/c-jun pathway is activated, whereas in smooth muscle cells, the JAK2/STAT3 pathway. Activation of JAK2/STAT3 pathway in response to ANGII was EGF receptor-dependent. Results obtained in cell culture are in agreement with the results obtained in isolated aorta. However, active MMP-2 was not found under cell culture conditions, whereas in isolated aorta, active MMP-2 was significantly (P < 0.05) increased after stimulation with ANGII, as detected by gelatine zymography. This increase of MMP-2 activity was not inhibited by blocking the pathways we identified to control pro-MMP-2 protein expression, but was abolished in the absence of endothelium. Our findings demonstrate that ANGII regulates pro-MMP-2 protein expression via cell-specific pathways in rat aorta. The endothelium may play an essential role in the activation of pro-MMP-2. These results may lead to new strategies for inhibiting MMP-2 expression and activity in distinct cell types of the aortic wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albaladejo P, Bouaziz H, Duriez M, Gohlke P, Levy BI, Safar ME, Benetos A (1994) Angiotensin converting enzyme inhibition prevents the increase in aortic collagen in rats. Hypertension 23:74–82. doi:10.1161/01.HYP.23.1.74

    Article  CAS  PubMed  Google Scholar 

  2. Arenas I, Xu Y, Lopez-Jaramillo P, Davidge ST (2003) Angiotensin II-induced MMP-2 release from endothelial cells is mediated by TNF-alpha. Am J Physiol Cell Physiol 286:779–784. doi:10.1152/ajpcell.00398.2003

    Article  Google Scholar 

  3. Basalyga DM, Simionescu DT, Xiong W, Baxter BT, Starcher BC, Vyavahare NR (2004) Elastin degradation and calcification in an abdominal aorta injury model. Circulation 110:3480–3487. doi:10.1161/01.CIR.0000148367.08413.E9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Berk BC, Corson MA (1997) Angiotensin II signal transduction in vascular smooth muscle, role of tyrosine kinases. Circ Res 80:607–616. doi:10.1161/01.RES.80.5.607

    Article  CAS  PubMed  Google Scholar 

  5. Boutouyrie P, Bussy C, Hayoz D, Hengstler J, Dartois N, Laloux B, Brunner H, Laurent S (2000) Local pulse pressure and regression of arterial wall hypertrophy during long-term antihypertensive treatment. Circulation 101:2601–2606. doi:10.1161/01.CIR.101.22.2601

    Article  CAS  PubMed  Google Scholar 

  6. Browatzki M, Larsen D, Pfeiffer C, Gehrke SG, Schmidt J, Kranzhofer A, Katus H (2008) Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-kappaB and activator protein 1 in a redox-sensitive manner. J Vasc Res 42:415–423. doi:10.1016/j.regpep.2007.12.005

    Article  Google Scholar 

  7. Bunkenburg B, van Amelsvoort T, Rogg H, Wood JM (1992) Receptor-mediated effects of angiotensin II on growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 20:746–754. doi:10.1161/01.HYP.20.6.746

    Article  CAS  PubMed  Google Scholar 

  8. Chen LC, Noelken ME, Nagase H (1993) Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3 (stromelysin 1). Biochemistry 32:10289–10295

    Article  CAS  PubMed  Google Scholar 

  9. Cho A, Graves J, Reidy MA (2000) Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20:2527–2532. doi:10.1161/01.ATV.20.12.2527

    Article  CAS  PubMed  Google Scholar 

  10. Desk R, Williams L, Health K (2011) Matrix metalloproteinases in vascular remodelling and atherogenesis. Circ Res 90:251–262. doi:10.1161/hh0302.105345

    Google Scholar 

  11. Dzau VJ (1984) Vascular renin–angiotensin: a possible autocrine or paracrine system in control. J Cardiovasc Pharmacol 6:377–382

    Article  CAS  Google Scholar 

  12. Frohlich ED, Sasaki O (1990) Dissociation of changes in cardiovascular mass and performance with angiotensin-converting enzyme inhibitors in Wistar-Kyoto and spontaneously hypertensive rats. J Am Coll Cardiol 16:1492–1499. doi:10.1016/0735-1097(90)90397-8

    Article  CAS  PubMed  Google Scholar 

  13. Gum R, Wang H, Lengyel E, Juarez J, Boyd D (1997) Regulation of 92 kDa type IV collagenase expression by the jun amino terminal kinase- and the extracellular signal-regulated kinase-dependent signalling cascades. Oncogene 14:1481–1493

    Article  CAS  PubMed  Google Scholar 

  14. Hanemaaijer R, Koolwijk P, Wil JA, Hinsbergh V (1993) Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Biochem J 809:803–809

    Google Scholar 

  15. Ishi T, Asuwa N (2000) Collagen and elastin degradation by matrix metalloproteinases and tissue inhibitors of matrix metalloproteinase in aortic dissection. Hum Pathol 31:640–646. doi:10.1053/hupa.2000.7642

    Article  Google Scholar 

  16. Ishiguro K, Hayashi K, Sasamura H, Sakamaki Y, Itoh H (2009) “Pulse” treatment with high-dose angiotensin blocker reverses renal arteriolar hypertrophy and regresses hypertension. Hypertension 53:83–89. doi:10.1161/HYPERTENSIONAHA.108.122721

    Article  CAS  PubMed  Google Scholar 

  17. Jiménes E, Pérez de la Blanca E, Urso L, González I, Salas J, Montiel M (2009) Angiotensin II induces MMP-2 activity via FAK/JNK pathway in human endothelial cells. BBRC 380:769–774. doi:10.1016/j.bbrc.2009.01.142

    Google Scholar 

  18. Lee Jin-Hee, Johnson Peter RA, Roth Michael, Hunt Nicholas H, Black Judith L (2001) ERK activation and mitogenesis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 280:1019–1029

    Google Scholar 

  19. Keshet Y, Seger R (2010) The MAP kinase signalling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 661:3–38. doi:10.1007/978-1-60761-795-2_1

    Article  CAS  PubMed  Google Scholar 

  20. Knox JB, Sukhova GK, Whittemore AD, Libby P (1997) Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95:205–212. doi:10.1161/01.CIR.95.1.205

    Article  CAS  PubMed  Google Scholar 

  21. Kroll K, Kelm MK, Burrig KF, Schrader J (1989) Transendothelial transport and metabolism of adenosine and inosine in the intact rat aorta. Circ Res 64:1147–1157. doi:10.1161/01.RES.64.6.1147

    Article  CAS  PubMed  Google Scholar 

  22. Lee YJ, Lee EB, Kwon YE, Lee JJ, Cho WS, Kim H, Song YW (2003) Effect of estrogen on the expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 and tissue inhibitor of metalloproternase-1 in osteoarthritis chondrocytes. Rheumatol Int 23:282–288. doi:10.1007/s00296-003-0312-5

    Article  CAS  PubMed  Google Scholar 

  23. Liacini A, Sylvester J, Li WQ, Huang W, Dehnade F, Ahmad M, Zafarullaha M (2003) Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated by MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. Exp Cell Res 288:208–217. doi:10.1016/S0014-4827(03)00180-0

    Article  CAS  PubMed  Google Scholar 

  24. Makowski GS, Ramsby ML (2005) Autoactivation profiles of calcium-dependent matrix metalloproteinase-2 and -9 in inflammatory synovial fluid: effect of pyrophosphate and bisphosphonates. Clin Chem Acta 358:182–191. doi:10.1016/j.cccn.2005.03.012

    Article  CAS  Google Scholar 

  25. Jamil Mayet, Stanton AV, Sinclair A-M, MacKay J, Shahi M, Foale RA, Nicolaides A, Poulter NR, Sever PS, McG. Thom SA, Hughes AD (1995) The effects of antihypertensive therapy on carotid vascular structure in man. Cardiovasc Res 30:147–152. doi:10.1016/S0008-6363(95)00026-7

    Article  Google Scholar 

  26. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 387:151–160

    Google Scholar 

  27. Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494. doi:10.1074/jbc.274.31.21491

    Article  CAS  PubMed  Google Scholar 

  28. Naftilan AJ, Pratt RE, Dzau VJ (1989) Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 83:1419–1424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Naito T, Masaki T, Nikolic-Paterson DJ, Tanji C, Yorioka N, Kohno N (2004) Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-beta1. Am J Physiol Renal Physiol 286:278–287. doi:10.1152/ajprenal.00139.2003

    Article  Google Scholar 

  30. Fabunmi Rosalind P, Baker Andrew H, Murray Edward J, Booth Robert FG, Newby Andrew C (1996) Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors of metalloproteinases-1, -2 and -3 in rabbit aortic smooth muscle cells. Biochem J 315:335–342

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Safar ME, Girerd X, Laurent S (1996) Structural changes of large conduit arteries in hypertension. J Hypertens 14:545–555

    Article  CAS  PubMed  Google Scholar 

  32. Safar ME, Levy BI, Struijker-Boudier H (2003) Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107:2864–2869. doi:10.1161/01.CIR.0000069826.36125.B4

    Article  PubMed  Google Scholar 

  33. Stetler-Stevenson WG (1994) Progelatinase A activation during tumor cell invasion. Invas Metastas 14:259–268

    CAS  Google Scholar 

  34. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase: isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338. doi:10.1074/jbc.270.10.5331

    Article  CAS  PubMed  Google Scholar 

  35. Toth M, Fridman R (2001) Assessment of gelatinases (MMP-2 and MMP-9) by gelatine zymography. In: Brooks SA, Schumacher U (eds) Metastasis Research Protocols, vol 1, 1st edn. Springer, Totowa, pp 163–173

  36. Tyagi SC, Matsubara L, Weber KT (1993) Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 26:191–198. doi:10.1016/0009-9120(93)90025-2

    Article  CAS  PubMed  Google Scholar 

  37. Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582. doi:10.1073/pnas.87.14.5578

    Article  PubMed Central  PubMed  Google Scholar 

  38. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi:10.1161/01.RES.0000070112.80711.3D

    Article  CAS  PubMed  Google Scholar 

  39. Yang X, Zhu MJ, Sreejayan N, Ren J, Du M (2005) Angiotensin II promotes smooth muscle cell proliferation and migration through release of heparin-binding epidermal growth factor and activation of EGF-receptor pathway. Mol Cell 20:263–270

    Article  CAS  Google Scholar 

  40. Zatschler B, Dieterich P, Müller B, Kasper M, Rauen U, Deussen A (2009) Improved vessel preservation after 4 days of cold storage: experimental study in rat arteries. J Vasc Surg 50:397–406. doi:10.1016/j.jvs.2009.04.064

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid from the Federal Ministry of Education and Research of Germany (BMBF) (Grant: 0315473A).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Deussen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopaliani, I., Martin, M., Zatschler, B. et al. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol 109, 419 (2014). https://doi.org/10.1007/s00395-014-0419-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0419-8

Keywords

Navigation