Skip to main content
Log in

Wave speed in human coronary arteries is not influenced by microvascular vasodilation: implications for wave intensity analysis

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Wave intensity analysis and wave separation are powerful tools for interrogating coronary, myocardial and microvascular physiology. Wave speed is integral to these calculations and is usually estimated by the single-point technique (SPc), a feasible but as yet unvalidated approach in coronary vessels. We aimed to directly measure wave speed in human coronary arteries and assess the impact of adenosine and nitrate administration. In 14 patients, the transit time Δt between two pressure signals was measured in angiographically normal coronary arteries using a microcatheter equipped with two high-fidelity pressure sensors located Δs = 5 cm apart. Simultaneously, intracoronary pressure and flow velocity were measured with a dual-sensor wire to derive SPc. Actual wave speed was calculated as DNc = Δst. Hemodynamic signals were recorded at baseline and during adenosine-induced hyperemia, before and after nitroglycerin administration. The energy of separated wave intensity components was assessed using SPc and DNc. At baseline, DNc equaled SPc (15.9 ± 1.8 vs. 16.6 ± 1.5 m/s). Adenosine-induced hyperemia lowered SPc by 40 % (p < 0.005), while DNc remained unchanged, leading to marked differences in respective separated wave energies. Nitroglycerin did not affect DNc, whereas SPc transiently fell to 12.0 ± 1.2 m/s (p < 0.02). Human coronary wave speed is reliably estimated by SPc under resting conditions but not during adenosine-induced vasodilation. Since coronary wave speed is unaffected by microvascular dilation, the SPc estimate at rest can serve as surrogate for separating wave intensity signals obtained during hyperemia, thus greatly extending the scope of WIA to study coronary physiology in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alastruey J (2011) Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed. J Biomech 44:885–891. doi:10.1016/j.jbiomech.2010.12.002

    Article  PubMed Central  PubMed  Google Scholar 

  2. Arts T, Kruger RT, van Gerven W, Lambregts JA, Reneman RS (1979) Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol 237:H469–H474

    Google Scholar 

  3. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840. doi:10.1056/NEJMra061889

    Article  CAS  PubMed  Google Scholar 

  4. Davies JE, Sen S, Broyd C, Hadjiloizou N, Baksi J, Francis DP, Foale RA, Parker KH, Hughes AD, Chukwuemeka A, Casula R, Malik IS, Mikhail GW, Mayet J (2011) Arterial pulse wave dynamics after percutaneous aortic valve replacement: fall in coronary diastolic suction with increasing heart rate as a basis for angina symptoms in aortic stenosis. Circulation 124:1565–1572. doi:10.1161/circulationaha.110.011916

    Article  PubMed  Google Scholar 

  5. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J (2006) Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113:1768–1778. doi:10.1161/circulationaha.105.603050

    Article  PubMed  Google Scholar 

  6. Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J (2006) Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Physiol Heart Circ Physiol 290:H878–H885. doi:10.1152/ajpheart.00751.2005

    Google Scholar 

  7. De Bruyne B, Pijls NHJ, Barbato E, Bartunek J, Bech J-W, Wijns W, Heyndrickx GR (2003) Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation 107:1877–1883. doi:10.1161/01.CIR.0000061950.24940.88

    Article  PubMed  Google Scholar 

  8. De Silva K, Foster P, Guilcher A, Bandara A, Jogiya R, Lockie T, Chowiencyzk P, Nagel E, Marber M, Redwood S, Plein S, Perera D (2013) Coronary wave energy: a novel predictor of functional recovery after myocardial infarction. Circ Cardiovasc Interv 6:166–175. doi:10.1161/circinterventions.112.973081

    Article  PubMed  Google Scholar 

  9. Hermeling E, Reesink KD, Kornmann LM, Reneman RS, Hoeks AP (2009) The dicrotic notch as alternative time-reference point to measure local pulse wave velocity in the carotid artery by means of ultrasonography. J Hypertens 27:2028–2035. doi:10.1097/HJH.0b013e32832f5890

    Article  CAS  PubMed  Google Scholar 

  10. Hermeling E, Reesink KD, Reneman RS, Hoeks AP (2008) Confluence of incident and reflected waves interferes with systolic foot detection of the carotid artery distension waveform. J Hypertens 26:2374–2380. doi:10.1097/HJH.0b013e328311cdd5

    Article  CAS  PubMed  Google Scholar 

  11. Heusch G (2010) Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 105:1–5. doi:10.1007/s00395-009-0074-7

    Article  PubMed  Google Scholar 

  12. Jones CJ, Kuo L, Davis MJ, Chilian WM (1996) In vivo and in vitro vasoactive reactions of coronary arteriolar microvessels to nitroglycerin. Am J Physiol 271:H461–H468

    Google Scholar 

  13. Kanatsuka H, Eastham CL, Marcus ML, Lamping KG (1992) Effects of nitroglycerin on the coronary microcirculation in normal and ischemic myocardium. J Cardiovasc Pharmacol 19:755–763

    CAS  PubMed  Google Scholar 

  14. Khir AW, O’Brien A, Gibbs JS, Parker KH (2001) Determination of wave speed and wave separation in the arteries. J Biomech 34:1145–1155. doi:10.1016/S0021-9290(01)00076-8

    Article  CAS  PubMed  Google Scholar 

  15. Kinlay S, Creager MA, Fukumoto M, Hikita H, Fang JC, Selwyn AP, Ganz P (2001) Endothelium-derived nitric oxide regulates arterial elasticity in human arteries in vivo. Hypertension 38:1049–1053. doi:10.1161/hy1101.095329

    Article  CAS  PubMed  Google Scholar 

  16. Kleinbongard P, Böse D, Baars T, Möhlenkamp S, Konorza T, Schöner S, Elter-Schulz M, Eggebrecht H, Degen H, Haude M, Levkau B, Schulz R, Erbel R, Heusch G (2011) Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res 108:344–352. doi:10.1161/circresaha.110.235713

    Article  CAS  PubMed  Google Scholar 

  17. Kolyva C, Spaan JAE, Piek JJ, Siebes M (2008) Windkesselness of coronary arteries hampers assessment of human coronary wave speed by single-point technique. Am J Physiol Heart Circ Physiol 295:H482–H490. doi:10.1152/ajpheart.00223.2008

    Google Scholar 

  18. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP (1985) Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 72:1257–1269. doi:10.1161/01.CIR.72.6.1257

    Article  CAS  PubMed  Google Scholar 

  19. Lockie TPE, Rolandi MC, Guilcher A, Perera D, De Silva K, Williams R, Asrress KN, Patel K, Plein S, Chowienczyk P, Siebes M, Redwood SR, Marber MS (2012) Synergistic adaptations to exercise in the systemic and coronary circulations that underlie the warm-up angina phenomenon. Circulation 126:2565–2574. doi:10.1161/circulationaha.112.094292

    Article  PubMed  Google Scholar 

  20. Naka KK, Tweddel AC, Doshi SN, Goodfellow J, Henderson AH (2006) Flow-mediated changes in pulse wave velocity: a new clinical measure of endothelial function. Eur Heart J 27:302–309. doi:10.1093/eurheartj/ehi619

    Article  PubMed  Google Scholar 

  21. Parker K (2009) A brief history of arterial wave mechanics. Med Biol Eng Comput 47:111–118. doi:10.1007/s11517-009-0440-5

    Article  PubMed Central  PubMed  Google Scholar 

  22. Parker KH, Jones CJ (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326. doi:10.1115/1.2891191

    Article  CAS  PubMed  Google Scholar 

  23. Rolandi MC, Nolte F, van de Hoef TP, Remmelink M, Baan J, Piek JJ, Spaan JAE, Siebes M (2012) Coronary wave intensity during the Valsalva manoeuvre in humans reflects altered intramural vessel compression responsible for extravascular resistance. J Physiol 590:4623–4635. doi:10.1113/jphysiol.2012.229914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. doi:10.1021/ac60214a047

    Article  CAS  Google Scholar 

  25. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (Adenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59:1392–1402. doi:10.1016/j.jacc.2011.11.003

    Google Scholar 

  26. Seto AH, Tehrani DM, Bharmal MI, Kern MJ (2013) Variations of coronary hemodynamic responses to intravenous adenosine infusion: implications for fractional flow reserve measurements. Catheter Cardiovasc Interv. doi:10.1002/ccd.25305 (in press)

  27. Siebes M, Kolyva C, Verhoeff B-J, Piek J, Spaan J (2009) Potential and limitations of wave intensity analysis in coronary arteries. Med Biol Eng Comput 47:233–239. doi:10.1007/s11517-009-0448-x

    Article  PubMed  Google Scholar 

  28. Tajaddini A, Kilpatrick DL, Schoenhagen P, Tuzcu EM, Lieber M, Vince DG (2005) Impact of age and hyperglycemia on the mechanical behavior of intact human coronary arteries: an ex vivo intravascular ultrasound study. Am J Physiol Heart Circ Physiol 288:H250–H255. doi:10.1152/ajpheart.00646.2004

    Article  CAS  PubMed  Google Scholar 

  29. Tarkin JM, Nijjer S, Sen S, Petraco R, Echavarria-Pinto M, Asress KN, Lockie T, Khawaja MZ, Mayet J, Hughes AD, Malik IS, Mikhail GW, Baker CS, Foale RA, Redwood S, Francis DP, Escaned J, Davies JE (2013) Hemodynamic response to intravenous adenosine and its effect on fractional flow reserve assessment: results of the adenosine for the functional evaluation of coronary stenosis severity (AFFECTS) study. Circ Cardiovasc Interv 6:654–661. doi:10.1161/circinterventions.113.000591

    Article  CAS  PubMed  Google Scholar 

  30. van de Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JAE, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 10:439–452. doi:10.1038/nrcardio.2013.86

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the skilled assistance of the catheterization laboratory staff at St. Thomas’ Hospital, London. This study was supported by the Dutch Heart Foundation (2006B186). M.C.R. received a PhD Scholarship of the Academic Medical Center. K.D.S is funded by a Heart Research UK fellowship (RG2593/10/12). D.P. receives financial support from the United Kingdom Department of Health via the National Institute for Health Research Comprehensive Biomedical Research Centre Award to Guy’s & St. Thomas’ National Health Service Foundation Trust in partnership with King’s College London.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Siebes.

Additional information

D. Perera and M. Siebes contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolandi, M.C., De Silva, K., Lumley, M. et al. Wave speed in human coronary arteries is not influenced by microvascular vasodilation: implications for wave intensity analysis. Basic Res Cardiol 109, 405 (2014). https://doi.org/10.1007/s00395-014-0405-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0405-1

Keywords

Navigation