Skip to main content

Advertisement

Log in

Human cytomegalovirus induces upregulation of arginase II: possible implications for vasculopathies

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Both human cytomegalovirus (HCMV) and arginase II (ARG II) have been implicated in the pathogenesis of cardiovascular diseases. The effects of HCMV on ARG II are unknown. The aim of this study was to investigate the effects of HCMV on ARG II expression in endothelial and vascular smooth muscle cells (SMC) both in vitro and ex vivo. Endothelial and SMC were infected with either HCMV or UV-irradiated HCMV. Expression of ARG II, endothelial or inducible nitric oxide synthase (eNOS and iNOS, respectively) and viral immediate early (IE) was quantified using quantitative PCR. Ganciclovir and short interfering RNA were used to determine the viral gene mediating the effects on ARG II. Detection of viral antigens and ARG II expression was performed by immunofluorescence or immunohistochemistry. HCMV infection increased both ARG II mRNA and protein levels in the examined cells; this effect was mediated by the HCMV IE2-p86 protein. The upregulation of ARG II was accompanied by a downregulation of eNOS but an induction of iNOS in HCMV-infected endothelial cells. Both eNOS and iNOS expressions were induced in HCMV-infected SMC. ARG II was abundantly expressed in endothelial cells, foam cells and SMC and was importantly significantly upregulated in HCMV-immunoreactive human carotid atherosclerotic plaques. HCMV IE2-p86 mediates ARG II upregulation in vitro and ARG II is co-expressed with HCMV antigens in human carotid atherosclerotic plaques. We speculate that HCMV may contribute to endothelial dysfunction via ARG II induction and reduced eNOS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauer V, Sotnikova R (2010) Nitric oxide–the endothelium-derived relaxing factor and its role in endothelial functions. Gen Physiol Biophys 29:319–340

    Article  CAS  PubMed  Google Scholar 

  2. Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkinson CP, Cederbaum SD, Ignarro LJ (1996) Arginase activity in endothelial cells: inhibition by NG-hydroxy-l-arginine during high-output NO production. Am J Physiol 271:H1988–H1998

    CAS  PubMed  Google Scholar 

  3. Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20:202–213. doi:10.1002/rmv.655

    Article  PubMed  Google Scholar 

  4. Cao W, Sun B, Feitelson MA, Wu T, Tur-Kaspa R, Fan Q (2009) Hepatitis C virus targets over-expression of arginase I in hepatocarcinogenesis. Int J Cancer 124:2886–2892. doi:10.1002/ijc.24265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chakravortty D, Hensel M (2003) Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect 5:621–627

    Article  CAS  PubMed  Google Scholar 

  6. Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RB, Caldwell RW (2012) Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol 165:506–519. doi:10.1111/j.1476-5381.2011.01584.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Das P, Lahiri A, Chakravortty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6:e1000899. doi:10.1371/journal.ppat.1000899

    Article  PubMed Central  PubMed  Google Scholar 

  8. Dhaunsi GS, Kaur J, Turner RB (2003) Role of NADPH oxidase in cytomegalovirus-induced proliferation of human coronary artery smooth muscle cells. J Biomed Sci 10:505–509. doi:10.1159/000072377

    Article  CAS  PubMed  Google Scholar 

  9. Durante W (2001) Regulation of l-arginine transport and metabolism in vascular smooth muscle cells. Cell Biochem Biophys 35:19–34. doi:10.1385/CBB:35:1:19

    Article  CAS  PubMed  Google Scholar 

  10. Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 34:906–911. doi:10.1111/j.1440-1681.2007.04638.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI (2001) Transforming growth factor-beta(1) stimulates l-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 103:1121–1127

    Article  CAS  PubMed  Google Scholar 

  12. Dziurzynski K, Chang SM, Heimberger AB, Kalejta RF, McGregor Dallas SR, Smit M, Soroceanu L, Cobbs CS (2012) Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol 14:246–255. doi:10.1093/neuonc/nor227

    Article  PubMed Central  PubMed  Google Scholar 

  13. Epstein SE, Zhu J, Burnett MS, Zhou YF, Vercellotti G, Hajjar D (2000) Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb Vasc Biol 20:1417–1420

    Article  CAS  PubMed  Google Scholar 

  14. Fong IW, Chiu B, Viira E, Tucker W, Wood H, Peeling RW (2002) Chlamydial heat-shock protein-60 antibody and correlation with Chlamydia pneumoniae in atherosclerotic plaques. J Infect Dis 186:1469–1473. doi:10.1086/344730

    Article  CAS  PubMed  Google Scholar 

  15. Gao X, Xu X, Belmadani S, Park Y, Tang Z, Feldman AM, Chilian WM, Zhang C (2007) TNF-alpha contributes to endothelial dysfunction by upregulating arginase in ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 27:1269–1275. doi:10.1161/ATVBAHA.107.142521

    Article  CAS  PubMed  Google Scholar 

  16. Gawn JM, Greaves RF (2002) Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J Virol 76:4441–4455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gilbert C, Boivin G (2005) Human cytomegalovirus resistance to antiviral drugs. Antimicrob Agents Chemother 49:873–883. doi:10.1128/AAC.49.3.873-883.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Grazia Revello M, Baldanti F, Percivalle E, Sarasini A, De-Giuli L, Genini E, Lilleri D, Labo N, Gerna G (2001) In vitro selection of human cytomegalovirus variants unable to transfer virus and virus products from infected cells to polymorphonuclear leukocytes and to grow in endothelial cells. J Gen Virol 82:1429–1438

    CAS  PubMed  Google Scholar 

  19. Gredmark-Russ S, Dzabic M, Rahbar A, Wanhainen A, Bjorck M, Larsson E, Michel JB, Soderberg-Naucler C (2009) Active cytomegalovirus infection in aortic smooth muscle cells from patients with abdominal aortic aneurysm. J Mol Med (Berl) 87:347–356. doi:10.1007/s00109-008-0413-4

    Article  Google Scholar 

  20. Heusch P, Aker S, Boengler K, Deindl E, van de Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, Di Lisa F, Schulz R (2010) Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol 299:H446–H453. doi:10.1152/ajpheart.01034.2009

    Article  CAS  PubMed  Google Scholar 

  21. Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114:107–132

    Article  CAS  PubMed  Google Scholar 

  22. Kleinbongard P, Heusch G, Schulz R (2010) TNF alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  23. Kloppenburg G, de Graaf R, Herngreen S, Grauls G, Bruggeman C, Stassen F (2005) Cytomegalovirus aggravates intimal hyperplasia in rats by stimulating smooth muscle cell proliferation. Microbes Infect 7:164–170. doi:10.1016/j.micinf.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  24. Kol A, Sukhova GK, Lichtman AH, Libby P (1998) Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 98:300–307

    Article  CAS  PubMed  Google Scholar 

  25. Krotova K, Patel JM, Block ER, Zharikov S (2010) Hypoxic upregulation of arginase II in human lung endothelial cells. Am J Physiol Cell Physiol 299:C1541–C1548. doi:10.1152/ajpcell.00068.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lemstrom KB, Bruning JH, Bruggeman CA, Koskinen PK, Aho PT, Yilmaz S, Lautenschlager IT, Hayry PJ (1994) Cytomegalovirus infection-enhanced allograft arteriosclerosis is prevented by DHPG prophylaxis in the rat. Circulation 90:1969–1978

    Article  CAS  PubMed  Google Scholar 

  27. McSharry JJ, Lurain NS, Drusano GL, Landay AL, Notka M, O’Gorman MR, Weinberg A, Shapiro HM, Reichelderfer PS, Crumpacker CS (1998) Rapid ganciclovir susceptibility assay using flow cytometry for human cytomegalovirus clinical isolates. Antimicrob Agents Chemother 42:2326–2331

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Melnick JL, Petrie BL, Dreesman GR, Burek J, McCollum CH, DeBakey ME (1983) Cytomegalovirus antigen within human arterial smooth muscle cells. Lancet 2:644–647

    Article  CAS  PubMed  Google Scholar 

  29. Mercorelli B, Lembo D, Palu G, Loregian A (2011) Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 131:309–329. doi:10.1016/j.pharmthera.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  30. Ming XF, Barandier C, Viswambharan H, Kwak BR, Mach F, Mazzolai L, Hayoz D, Ruffieux J, Rusconi S, Montani JP, Yang Z (2004) Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation 110:3708–3714. doi:10.1161/01.CIR.0000142867.26182.32

    Article  CAS  PubMed  Google Scholar 

  31. Mistry SK, Zheng M, Rouse BT, Morris SM Jr (2001) Induction of arginases I and II in cornea during herpes simplex virus infection. Virus Res 73:177–182

    Article  CAS  PubMed  Google Scholar 

  32. Morris SM Jr (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157:922–930. doi:10.1111/j.1476-5381.2009.00278.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651. doi:10.1111/j.1476-5381.2009.00291.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666. doi:10.1038/333664a0

    Article  CAS  PubMed  Google Scholar 

  35. Popovic M, Smiljanic K, Dobutovic B, Syrovets T, Simmet T, Isenovic ER (2012) Human cytomegalovirus infection and atherothrombosis. J Thromb Thrombolysis 33:160–172. doi:10.1007/s11239-011-0662-x

    Article  CAS  PubMed  Google Scholar 

  36. Qiu H, Straat K, Rahbar A, Wan M, Soderberg-Naucler C, Haeggstrom JZ (2008) Human CMV infection induces 5-lipoxygenase expression and leukotriene B4 production in vascular smooth muscle cells. J Exp Med 205:19–24. doi:10.1084/jem.20070201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M, Caldwell RB, Caldwell RW (2008) Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res 102:95–102. doi:10.1161/CIRCRESAHA.107.155028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ryoo S, Gupta G, Benjo A, Lim HK, Camara A, Sikka G, Lim HK, Sohi J, Santhanam L, Soucy K, Tuday E, Baraban E, Ilies M, Gerstenblith G, Nyhan D, Shoukas A, Christianson DW, Alp NJ, Champion HC, Huso D, Berkowitz DE (2008) Endothelial arginase II—a novel target for the treatment of atherosclerosis. Circ Res 102:923–932. doi:10.1161/Circresaha.107.169573

    Article  CAS  PubMed  Google Scholar 

  39. Ryoo S, Lemmon CA, Soucy KG, Gupta G, White AR, Nyhan D, Shoukas A, Romer LH, Berkowitz DE (2006) Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res 99:951–960. doi:10.1161/01.RES.0000247034.24662.b4

    Article  CAS  PubMed  Google Scholar 

  40. Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ (1999) An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10:21–28

    Article  CAS  PubMed  Google Scholar 

  41. Scholz M, Doerr HW, Cinatl J (2001) Inhibition of cytomegalovirus immediate early gene expression: a therapeutic option? Antiviral Res 49:129–145

    Article  CAS  PubMed  Google Scholar 

  42. Shen YH, Zhang L, Utama B, Wang J, Gan Y, Wang X, Chen L, Vercellotti GM, Coselli JS, Mehta JL, Wang XL (2006) Human cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN (phosphatase and tensin homolog deleted on chromosome 10). Cardiovasc Res 69:502–511. doi:10.1016/j.cardiores.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  43. Soderberg-Naucler C (2006) Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 259:219–246. doi:10.1111/j.1365-2796.2006.01618.x

    Article  CAS  PubMed  Google Scholar 

  44. Soderberg-Naucler C (2008) HCMV microinfections in inflammatory diseases and cancer. J Clin Virol 41:218–223. doi:10.1016/j.jcv.2007.11.009

    Article  PubMed  Google Scholar 

  45. Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY, Huang SX, Ma M, Shen B, Qian SB, Hengel H, Mann M, Ingolia NT, Weissman JS (2012) Decoding human cytomegalovirus. Science 338:1088–1093. doi:10.1126/science.1227919

    Article  CAS  PubMed  Google Scholar 

  46. Teupser D, Burkhardt R, Wilfert W, Haffner I, Nebendahl K, Thiery J (2006) Identification of macrophage arginase I as a new candidate gene of atherosclerosis resistance. Arterioscler Thromb Vasc Biol 26:365–371. doi:10.1161/01.ATV.0000195791.83380.4c

    Article  CAS  PubMed  Google Scholar 

  47. Wei LH, Jacobs AT, Morris SM Jr, Ignarro LJ (2000) IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 279:C248–C256

    CAS  PubMed  Google Scholar 

  48. Weis M, Kledal TN, Lin KY, Panchal SN, Gao SZ, Valantine HA, Mocarski ES, Cooke JP (2004) Cytomegalovirus infection impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine in transplant arteriosclerosis. Circulation 109:500–505. doi:10.1161/01.CIR.0000109692.16004.AF

    Article  CAS  PubMed  Google Scholar 

  49. Wentworth BB, French L (1970) Plaque assay of cytomegalovirus strains of human origin. Proc Soc Exp Biol Med 135:253–258

    Article  CAS  PubMed  Google Scholar 

  50. White EA, Clark CL, Sanchez V, Spector DH (2004) Small internal deletions in the human cytomegalovirus IE2 gene result in nonviable recombinant viruses with differential defects in viral gene expression. J Virol 78:1817–1830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wong GK, Marsden PA (1996) Nitric oxide synthases: regulation in disease. Nephrol Dial Transplant 11:215–220

    Article  CAS  PubMed  Google Scholar 

  52. Yaiw KC, Ovchinnikova O, Taher C, Mohammad AA, Davoudi B, Shlyakhto E, Rotar O, Konradi A, Wilhelmi V, Rahbar A, Butler L, Assinger A, Soderberg-Naucler C (2013) High prevalence of human cytomegalovirus in carotid atherosclerotic plaques obtained from Russian patients undergoing carotid endarterectomy. Herpesviridae 4:3. doi:10.1186/2042-4280-4-3

    Article  PubMed  Google Scholar 

  53. Zhang Z, Evers DL, McCarville JF, Dantonel JC, Huong SM, Huang ES (2006) Evidence that the human cytomegalovirus IE2-86 protein binds mdm2 and facilitates mdm2 degradation. J Virol 80:3833–3843. doi:10.1128/JVI.80.8.3833-3843.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, Patel J (2008) Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol 295:C1183–C1190. doi:10.1152/ajpcell.00075.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Charlotte Tammik, the late Maria Ekström and Jessica Petterson for their excellent technical assistance. We are indebted to Drs. Vladimir V. Shlomin, Michail L. Gordeev and Vera A. Ovchinnikova for their assistance in collecting carotid plaques. We would like to thank Robert M. Badeau, Ph.D. for proofreading this manuscript’s English language content. This work was supported by Swedish Heart and Lung Foundation (Grant No. 20100614, 20100259), the Swedish Medical Research Foundation (K2010-56X-12615-13-3, K2012-64X-10857-19-5), CERIC, EU WP7 BASTION and the Cardiovascular Program and Stockholm County Council, Sten A Olssons Foundation, Biltema Foundation, Torsten Söderbergs Foundation, IngaBritt and Arne Lundbergs Foundation, Petrus and Augusta Hedlunds Foundation, nxt2b and Stichting af Jochnicks Foundation.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koon-Chu Yaiw or Cecilia Söderberg-Nauclér.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2014_401_MOESM1_ESM.tif

Effects of human herpes simplex virus (HSV) type 1 (HSV-1) and type 2 (HSV-2) on arginase II (ARG II) mRNA expression and morphology of endothelial cells at 3-day post-infection. A Relative expression of ARG II with indicated multiplicity of infection (moi) of HSV-1 or HSV-2 as assayed by quantitative TaqMan PCR. B Representative photomicrograpic of HSV-1, HSV-2 and HCMV-infected HUVEC (biological replicate, n = 3, with technical duplicates for each PCR; values are mean ± SD; *p = 0.01-0.05; **p = 0.001-0.01; ***p < 0.001; n.s = not significant; moi = multiplicity of infection) (TIFF 5824 kb)

395_2014_401_MOESM2_ESM.tif

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell proliferation assay to determine cytotoxicity of HCMV infection on endothelial cells, HUVEC at 1-, 3- and 5-day post-infection (dpi). moi = multiplicity of infection (TIFF 3665 kb)

395_2014_401_MOESM3_ESM.tif

Selected cDNA microarray data on rat heart transplants from latently rat cytomegalovirus-infected or uninfected donor hearts performed with Illumina RatRef-12 arrays containing > 22,000 probes selected from the NCBI RefSeq database. The fold change was determined by dividing expression of infected over uninfected gene of interest. Arg1 = arginase 1; Arg2 = arginase 2; nNOS = neuronal nitric oxide synthase; iNOS = inducible nitric oxide synthase; eNOS = endothelial nitric oxide synthase (TIFF 1740 kb)

395_2014_401_MOESM4_ESM.tif

Aortic ring assay performed on aorta obtained from murine cytomegalovirus (MCMV)-infected APOE knock-out mouse. The number of newly growth vessels or length of sprouting vessels was measured by Adobe Photoshop. Number of mice in each group = 5 (TIFF 1411 kb)

Supplementary material 5 (DOC 35 kb)

Supplementary material 6 (DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaiw, KC., Mohammad, AA., Taher, C. et al. Human cytomegalovirus induces upregulation of arginase II: possible implications for vasculopathies. Basic Res Cardiol 109, 401 (2014). https://doi.org/10.1007/s00395-014-0401-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0401-5

Keywords

Navigation