Dickkopf-1 (DKK1) phosphatase and tensin homolog on chromosome 10 (PTEN) crosstalk via microRNA interference in the diabetic heart

  • Shukuan Ling
  • Yochai Birnbaum
  • Manjyot K. Nanhwan
  • Bejoy Thomas
  • Mandeep Bajaj
  • Yu Li
  • Yinghui LiEmail author
  • Yumei YeEmail author
Original Contribution


Competitive endogenous RNAs (ceRNAs) regulate mRNA transcripts containing common microRNA (miRNA) recognition elements (MREs) through sequestration of shared miRNAs. Interactions of ceRNA have been demonstrated in cancerous cells. However, a paucity of information is available relative to the interactions of ceRNAs interaction in diabetes mellitus and the myocardium. The purpose of this study is to assess the potential role of DKK1 and PTEN in ceRNA regulation utilizing their common miRNAs in diabetic cardiomyocytes. The interactions’ regulation between PTEN and DKK1 were determined in two diabetic models in vivo (streptozotocin-induced type-1 DM mice and db/db mice) and in vitro (human cardiomyocytes cells exposed to hyperglycemia). The levels of DKK1 and PTEN (mRNA and protein) were upregulated in parallel in all three diabetic models. DKK1 modulates PTEN protein levels in a miRNA and 3′UTR-dependent manner. RNAi-mediated DKK1 gene silencing resulted in a decreased PTEN expression and vice versa. The effect was blocked when Dicer was inhibited. Silencing either PTEN or DKK1 resulted in an increase of the availabilities of shared miRNAs. The silencing of either PTEN or DKKI resulted in a suppression end of the luciferase-PTEN 3′UTR activity. However, the over expression of DKK1 3′UTR or PTEN 3′UTR resulted in an increase in the activity. The attenuation of DKK1 increased AKT phosphorylation, improved glucose uptake and decreased apoptosis in HCMs exposed to hyperglycemia. The effects were blocked by PI3K inhibition. DKK1 and PTEN transcripts are co-upregulated in DM and hyperglycemia. DKK1 and PTEN serve as ceRNA, affecting the expression of each other via competition for miRNAs binding.


Diabetes mellitus Competitive endogenous RNA (ceRNA) MicroRNA Dickkopf-1 (DKK1) Phosphatase and tensin homolog on chromosome 10 (PTEN) 



American Heart Association (SDG0830030N); Amylin; Merck; John S. Dunn Endowment, and National Basic Research Program of China (973 program, 2011CB707704). Yochai Birnbaum received Research grants from Merck; Forest; Roche; Astra Zeneca. Mandeep Bajaj received Research grants from American Diabetes Association, Amylin, BMS/Astra Zenica. Boehringer Ingelheim and Sanofi Aventis, and lecture fees from Sanofi Aventis, Boehringer Ingelheim and Eli-Lilly. Yumei Ye received Research grants from Merck; Forest; Roche; Astra Zeneca.


  1. 1.
    Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3:683–686. doi: 10.1038/35083081 PubMedCrossRefGoogle Scholar
  2. 2.
    Bauersachs J, Thum T (2011) Biogenesis and regulation of cardiovascular microRNAs. Circ Res 109:334–347. doi: 10.1161/CIRCRESAHA.110.228676 PubMedCrossRefGoogle Scholar
  3. 3.
    Birnbaum Y, Castillo AC, Qian J, Ling S, Ye H, Perez-Polo JR, Bajaj M, Ye Y (2012) Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus. Cardiovasc Drugs Ther 26:445–456. doi: 10.1007/s10557-012-6409-x PubMedCrossRefGoogle Scholar
  4. 4.
    Birnbaum Y, Long B, Qian J, Perez-Polo JR, Ye Y (2011) Pioglitazone limits myocardial infarct size, activates Akt, and upregulates cPLA2 and COX-2 in a PPAR-gamma-independent manner. Basic Res Cardiol 106:431–446. doi: 10.1007/s00395-011-0162-3 PubMedCrossRefGoogle Scholar
  5. 5.
    Brade T, Manner J, Kuhl M (2006) The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart. Cardiovasc Res 72:198–209. doi: 10.1016/j.cardiores.2006.06.025 PubMedCrossRefGoogle Scholar
  6. 6.
    Cao C, Chen Y, Wang W, Liu Y, Liu G (2011) Ghrelin inhibits insulin resistance induced by glucotoxicity and lipotoxicity in cardiomyocyte. Peptides 32:209–215. doi: 10.1016/j.peptides.2010.11.011 PubMedCrossRefGoogle Scholar
  7. 7.
    Chong ZZ, Li F, Maiese K (2005) Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res Brain Res Rev 49:1–21. doi: 10.1016/j.brainresrev.2004.11.005 PubMedCrossRefGoogle Scholar
  8. 8.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480. doi: 10.1016/j.cell.2006.10.018 PubMedCrossRefGoogle Scholar
  9. 9.
    Glass C, Singla DK (2011) MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 301:H2038–H2049. doi: 10.1152/ajpheart.00271.2011 PubMedCrossRefGoogle Scholar
  10. 10.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460. doi: 10.1016/j.cardiores.2003.09.024 PubMedCrossRefGoogle Scholar
  11. 11.
    Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi: 10.1161/CIRCULATIONAHA.108.805242 PubMedCrossRefGoogle Scholar
  12. 12.
    Hie M, Iitsuka N, Otsuka T, Tsukamoto I (2011) Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med 28:455–462. doi: 10.3892/ijmm.2011.697 PubMedGoogle Scholar
  13. 13.
    Hu Z, Lee IH, Wang X, Sheng H, Zhang L, Du J, Mitch WE (2007) PTEN expression contributes to the regulation of muscle protein degradation in diabetes. Diabetes 56:2449–2456. doi: 10.2337/db06-1731 PubMedCrossRefGoogle Scholar
  14. 14.
    Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, Mitch WE (2010) PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes 59:1312–1320. doi: 10.2337/db09-1155 PubMedCrossRefGoogle Scholar
  15. 15.
    Ip W, Chiang YT, Jin T (2012) The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: the current understanding, dispute, and perspective. Cell Biosci 2:28. doi: 10.1186/2045-3701-2-28 PubMedCrossRefGoogle Scholar
  16. 16.
    Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP (2011) In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395. doi: 10.1016/j.cell.2011.09.032 PubMedCrossRefGoogle Scholar
  17. 17.
    Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634. doi: 10.1242/jcs.00623 PubMedCrossRefGoogle Scholar
  18. 18.
    Keyes KT, Xu J, Long B, Zhang C, Hu Z, Ye Y (2010) Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol 298:H1198–H1208. doi: 10.1152/ajpheart.00915.2009 PubMedCrossRefGoogle Scholar
  19. 19.
    Kim Y, Phan D, van Rooij E, Wang DZ, McAnally J, Qi X, Richardson JA, Hill JA, Bassel-Duby R, Olson EN (2008) The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest 118:124–132. doi: 10.1172/JCI33255 PubMedCrossRefGoogle Scholar
  20. 20.
    Kondo T, Kahn CR (2004) Altered insulin signaling in retinal tissue in diabetic states. J Biol Chem 279:37997–38006. doi: 10.1074/jbc.M401339200 PubMedCrossRefGoogle Scholar
  21. 21.
    Lin CL, Wang JY, Ko JY, Huang YT, Kuo YH, Wang FS (2010) Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J Am Soc Nephrol 21:124–135. doi: 10.1681/ASN.2008101059 PubMedCrossRefGoogle Scholar
  22. 22.
    Lin H, Qian J, Castillo AC, Long B, Keyes KT, Chen G, Ye Y (2011) Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52:6308–6314. doi: 10.1167/iovs.10-6632 PubMedCrossRefGoogle Scholar
  23. 23.
    Lorenzen JM, Martino F, Thum T (2012) Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 107:245. doi: 10.1007/s00395-012-0245-9 PubMedCrossRefGoogle Scholar
  24. 24.
    Miljic D, Djurovic M, Pekic S, Doknic M, Stojanovic M, Milic N, Casanueva FF, Ghatei M, Popovic V (2007) Glucose metabolism during ghrelin infusion in patients with anorexia nervosa. J Endocrinol Invest 30:771–775PubMedGoogle Scholar
  25. 25.
    Mocanu MM, Field DC, Yellon DM (2006) A potential role for PTEN in the diabetic heart. Cardiovasc Drugs Ther 20:319–321. doi: 10.1007/s10557-006-8876-4 PubMedCrossRefGoogle Scholar
  26. 26.
    Nuche-Berenguer B, Moreno P, Portal-Nunez S, Dapia S, Esbrit P, Villanueva-Penacarrillo ML (2010) Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul Pept 159:61–66. doi: 10.1016/j.regpep.2009.06.010 PubMedCrossRefGoogle Scholar
  27. 27.
    Oerlemans MI, Goumans MJ, van Middelaar B, Clevers H, Doevendans PA, Sluijter JP (2010) Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105:631–641. doi: 10.1007/s00395-010-0100-9 PubMedCrossRefGoogle Scholar
  28. 28.
    Ohtani K, Dimmeler S (2011) Control of cardiovascular differentiation by microRNAs. Basic Res Cardiol 106:5–11. doi: 10.1007/s00395-010-0139-7 PubMedCrossRefGoogle Scholar
  29. 29.
    Pal A, Barber TM, van de Bunt M, Rudge SA, Zhang Q, Lachlan KL, Cooper NS, Linden H, Levy JC, Wakelam MJ, Walker L, Karpe F, Gloyn AL (2012) PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med 367:1002–1011. doi: 10.1056/NEJMoa1113966 PubMedCrossRefGoogle Scholar
  30. 30.
    Parajuli N, Yuan Y, Zheng X, Bedja D, Cai ZP (2012) Phosphatase PTEN is critically involved in post-myocardial infarction remodeling through the Akt/interleukin-10 signaling pathway. Basic Res Cardiol 107:248. doi: 10.1007/s00395-012-0248-6 PubMedCrossRefGoogle Scholar
  31. 31.
    Qian J, Ling S, Castillo AC, Long B, Birnbaum Y, Ye Y (2012) Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia. Am J Physiol Heart Circ Physiol 302:H1806–H1817. doi: 10.1152/ajpheart.00929.2011 PubMedCrossRefGoogle Scholar
  32. 32.
    Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82:21–29. doi: 10.1093/cvr/cvp015 PubMedCrossRefGoogle Scholar
  33. 33.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. doi: 10.1016/j.cell.2011.07.014 PubMedCrossRefGoogle Scholar
  34. 34.
    Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, Abdellatif M (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285:20281–20290. doi: 10.1074/jbc.M110.109207 PubMedCrossRefGoogle Scholar
  35. 35.
    Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi: 10.1161/CIRCRESAHA.108.186429 PubMedCrossRefGoogle Scholar
  36. 36.
    Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96:32–37. doi: 10.1093/cvr/cvs163 PubMedCrossRefGoogle Scholar
  37. 37.
    Song P, Wu Y, Xu J, Xie Z, Dong Y, Zhang M, Zou MH (2007) Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 116:1585–1595. doi: 10.1161/CIRCULATIONAHA.107.716498 PubMedCrossRefGoogle Scholar
  38. 38.
    Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A (2011) An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–381. doi: 10.1016/j.cell.2011.09.041 PubMedCrossRefGoogle Scholar
  39. 39.
    Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357. doi: 10.1016/j.cell.2011.09.029 PubMedCrossRefGoogle Scholar
  40. 40.
    Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174. doi: 10.1038/nsmb.1921 PubMedCrossRefGoogle Scholar
  41. 41.
    Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM (2005) Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 54:2360–2364. doi: 10.2337/diabetes.54.8.2360 PubMedCrossRefGoogle Scholar
  42. 42.
    von Maltzahn J, Bentzinger CF, Rudnicki MA (2012) Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol 14:186–191. doi: 10.1038/ncb2404 CrossRefGoogle Scholar
  43. 43.
    Wang B, Raedschelders K, Shravah J, Hui Y, Safaei HG, Chen DD, Cook RC, Fradet G, Au CL, Ansley DM (2011) Differences in myocardial PTEN expression and Akt signalling in type 2 diabetic and nondiabetic patients undergoing coronary bypass surgery. Clin Endocrinol (Oxf) 74:705–713. doi: 10.1111/j.1365-2265.2011.03979.x CrossRefGoogle Scholar
  44. 44.
    Wang X, Zhang X, Ren XP, Chen J, Liu H, Yang J, Medvedovic M, Hu Z, Fan GC (2010) MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 122:1308–1318. doi: 10.1161/CIRCULATIONAHA.110.964684 PubMedCrossRefGoogle Scholar
  45. 45.
    Wei L, Lu J, Feng L, Long D, Shan J, Li S, Li Y (2010) HIF-1alpha accumulation upregulates MICA and MICB expression on human cardiomyocytes and enhances NK cell cytotoxicity during hypoxia-reoxygenation. Life Sci 87:111–119. doi: 10.1016/j.lfs.2010.05.012 PubMedCrossRefGoogle Scholar
  46. 46.
    Wijesekara N, Konrad D, Eweida M, Jefferies C, Liadis N, Giacca A, Crackower M, Suzuki A, Mak TW, Kahn CR, Klip A, Woo M (2005) Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol 25:1135–1145. doi: 10.1128/MCB.25.3.1135-1145.2005 PubMedCrossRefGoogle Scholar
  47. 47.
    Wong JT, Kim PT, Peacock JW, Yau TY, Mui AL, Chung SW, Sossi V, Doudet D, Green D, Ruth TJ, Parsons R, Verchere CB, Ong CJ (2007) Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity. Diabetologia 50:395–403. doi: 10.1007/s00125-006-0531-x PubMedCrossRefGoogle Scholar
  48. 48.
    Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW (2012) Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol 227:1391–1398. doi: 10.1002/jcp.22852 PubMedCrossRefGoogle Scholar
  49. 49.
    Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y (2011) The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 106:925–952. doi: 10.1007/s00395-011-0216-6 PubMedCrossRefGoogle Scholar
  50. 50.
    Ye Y, Perez-Polo JR, Qian J, Birnbaum Y (2011) The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 43:534–542. doi: 10.1152/physiolgenomics.00130.2010 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shukuan Ling
    • 1
    • 2
    • 3
  • Yochai Birnbaum
    • 2
    • 4
  • Manjyot K. Nanhwan
    • 2
  • Bejoy Thomas
    • 2
  • Mandeep Bajaj
    • 5
  • Yu Li
    • 1
  • Yinghui Li
    • 1
    • 3
    Email author
  • Yumei Ye
    • 2
    Email author
  1. 1.School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.The Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.State Key Laboratory of Space Medicine Fundamentals and ApplicationChina Astronaut Research and Training CenterBeijingChina
  4. 4.The Section of CardiologyBaylor College of MedicineHoustonUSA
  5. 5.The Section of EndocrinologyBaylor College of MedicineHoustonUSA

Personalised recommendations