Skip to main content

Advertisement

Log in

Overfed Ossabaw swine with early stage metabolic syndrome have normal coronary collateral development in response to chronic ischemia

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Ossabaw miniswine have been naturally selected to efficiently store large amounts of lipids offering them a survival advantage. Our goal was to evaluate the myocardial response to chronic ischemia of the Ossabaw consuming a hypercaloric, high-fat/cholesterol diet with and without metformin supplementation. At 6 weeks of age animals were fed either a regular diet (OC, n = 9), a hypercaloric high-fat/cholesterol diet (OHC, n = 9), or a hypercaloric high-fat/cholesterol diet supplemented with metformin (OHCM, n = 8). At 9 weeks, all animals underwent ameroid constrictor placement to the left circumflex coronary artery to simulate chronic ischemia. Seven weeks after ameroid placement, all animals underwent hemodynamic and functional measurements followed by cardiac harvest. Both OHC and OHCM animals developed significantly greater weight gain, total cholesterol, and LDL:HDL ratio compared to OC controls. Metformin administration reversed diet-induced hypertension and glucose intolerance. There were no differences in global and regional contractility, myocardial perfusion, capillary and arteriolar density, or total protein oxidation between groups. Myocardial protein expression of VEGF, PPAR-α, γ, and δ was significantly increased in the OHC and OHCM groups. Microvessel reactivity was improved in the OHC and OHCM groups compared to controls, and correlated with increased p-eNOS expression. Overfed Ossabaw miniswine develop several components of metabolic syndrome. However, impairments of myocardial function, neovascularization and perfusion were not present, and microvessel reactivity was paradoxically improved in hypercholesterolemic animals. The observed cardioprotection despite metabolic derangements may be due to lipid-dependant upregulation of the PPAR pathway which is anti-inflammatory and governs myocardial fatty acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belin de Chantemele EJ, Irfan Ali M, Mintz J, Stepp DW (2009) Obesity-induced insulin resistance causes endothelial dysfunction without reducing the vascular response to hindlimb ischemia. Basic Res Cardiol 104:707–717. doi:10.1007/s00395-009-0062-y

    Article  PubMed  CAS  Google Scholar 

  2. Bender SB, Tune JD, Borbouse L, Long X, Sturek M, Laughlin MH (2009) Altered mechanism of adenosine-induced coronary arteriolar dilation in early-stage metabolic syndrome. Exp Biol Med (Maywood) 234:683–692. doi:10.3181/0812-RM-350

    Article  CAS  Google Scholar 

  3. Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 103:274–284. doi:10.1007/s00395-007-0691-y

    Article  PubMed  CAS  Google Scholar 

  4. Boodhwani M, Nakai Y, Mieno S, Voisine P, Bianchi C, Araujo EG, Feng J, Michael K, Li J, Sellke FW (2006) Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. Ann Thorac Surg 81:634–641. doi:10.1016/j.athoracsur.2005.07.090

    Article  PubMed  Google Scholar 

  5. Boodhwani M, Sodha NR, Mieno S, Ramlawi B, Xu SH, Feng J, Clements RT, Ruel M, Sellke FW (2007) Insulin treatment enhances the myocardial angiogenic response in diabetes. J Thorac Cardiovasc Surg 134:1453–1460. doi:10.1016/j.jtcvs.2007.08.025 (discussion 1460)

    Google Scholar 

  6. Boodhwani M, Sodha NR, Mieno S, Xu SH, Feng J, Ramlawi B, Clements RT, Sellke FW (2007) Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation 116:I31–I37. doi:10.1161/CIRCULATIONAHA.106.680157

    Article  PubMed  Google Scholar 

  7. Borbouse L, Dick GM, Payne GA, Payne BD, Svendsen MC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD (2010) Contribution of BK(Ca) channels to local metabolic coronary vasodilation: effects of metabolic syndrome. Am J Physiol Heart Circ Physiol 298:H966–H973. doi:10.1152/ajpheart.00876.2009

    Article  PubMed  CAS  Google Scholar 

  8. Chu LM, Robich MP, Lassaletta AD, Feng J, Laham RJ, Burgess T, Clements RT, Sellke FW (2011) Resveratrol supplementation abrogates pro-arteriogenic effects of intramyocardial vascular endothelial growth factor in a hypercholesterolemic swine model of chronic ischemia. Surgery 150:390–399. doi:10.1016/j.surg.2011.06.009

    Article  PubMed  Google Scholar 

  9. Clements RT, Sodha NR, Feng J, Boodhwani M, Liu Y, Mieno S, Khabbaz KR, Bianchi C, Sellke FW (2009) Impaired coronary microvascular dilation correlates with enhanced vascular smooth muscle MLC phosphorylation in diabetes. Microcirculation 16:193–206. doi:10.1080/10739680802461950

    Article  PubMed  CAS  Google Scholar 

  10. de Groot D, Pasterkamp G, Hoefer IE (2009) Cardiovascular risk factors and collateral artery formation. Eur J Clin Invest 39:1036–1047. doi:10.1111/j.1365-2362.2009.02205.x

    Article  PubMed  Google Scholar 

  11. Dohner JW (2001) The encyclopedia of historic and endangered livestock and poultry breeds. Yale University Press

  12. Hattan N, Chilian WM, Park F, Rocic P (2007) Restoration of coronary collateral growth in the Zucker obese rat: impact of VEGF and ecSOD. Basic Res Cardiol 102:217–223. doi:10.1007/s00395-007-0646-3

    Article  PubMed  CAS  Google Scholar 

  13. Iliadis F, Kadoglou N, Didangelos T (2011) Insulin and the heart. Diabetes Res Clin Pract 93(Suppl 1):S86–S91. doi:10.1016/S0168-8227(11)70019-5

    Article  PubMed  CAS  Google Scholar 

  14. Katz PS, Trask AJ, Souza-Smith FM, Hutchinson KR, Galantowicz ML, Lord KC, Stewart JA Jr, Cismowski MJ, Varner KJ, Lucchesi PA (2011) Coronary arterioles in type 2 diabetic (db/db) mice undergo a distinct pattern of remodeling associated with decreased vessel stiffness. Basic Res Cardiol 106:1123–1134. doi:10.1007/s00395-011-0201-0

    Article  PubMed  CAS  Google Scholar 

  15. Lassaletta AD, Chu LM, Sellke FW (2011) Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 106:897–909. doi:10.1007/s00395-011-0200-1

    Article  PubMed  Google Scholar 

  16. Li Z, Woollard JR, Wang S, Korsmo MJ, Ebrahimi B, Grande JP, Textor SC, Lerman A, Lerman LO (2011) Increased glomerular filtration rate in early metabolic syndrome is associated with renal adiposity and microvascular proliferation. Am J Physiol Renal Physiol 301:F1078–F1087. doi:10.1152/ajprenal.00333.2011

    Article  PubMed  CAS  Google Scholar 

  17. Liepinsh E, Skapare E, Svalbe B, Makrecka M, Cirule H, Dambrova M (2011) Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur J Pharmacol 658:277–283. doi:10.1016/j.ejphar.2011.02.019

    Article  PubMed  CAS  Google Scholar 

  18. Liu Y, Gutterman DD (2009) Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol 104:211–227. doi:10.1007/s00395-009-0775-y

    Article  PubMed  Google Scholar 

  19. Lloyd PG, Fang M, Brisbin ILJ, Anderson L, Sturek M (2006) AMP kinase gene mutation is consistent with a thrifty phenotype (metabolic syndrome) in a population of feral swine. FASEB J 20:A299

    Google Scholar 

  20. Maejima Y, Okada H, Haraguchi G, Onai Y, Kosuge H, Suzuki J, Isobe M (2011) Telmisartan, a unique ARB, improves left ventricular remodeling of infarcted heart by activating PPAR gamma. Lab Invest 91:932–944. doi:10.1038/labinvest.2011.45

    Article  PubMed  CAS  Google Scholar 

  21. Moreno-Navarrete JM, Ortega FJ, Rodriguez-Hermosa JI, Sabater M, Pardo G, Ricart W, Fernandez-Real JM (2011) OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects. Diabetes 60:168–176. doi:10.2337/db10-0805

    Article  PubMed  CAS  Google Scholar 

  22. Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M (2010) Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med 60:300–315

    PubMed  CAS  Google Scholar 

  23. Oltman CL, Richou LL, Davidson EP, Coppey LJ, Lund DD, Yorek MA (2006) Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 291:H1780–H1787. doi:10.1152/ajpheart.01297.2005

    Article  PubMed  CAS  Google Scholar 

  24. Orlandi A, Chavakis E, Seeger F, Tjwa M, Zeiher AM, Dimmeler S (2010) Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol 105:703–712. doi:10.1007/s00395-010-0109-0

    Article  PubMed  CAS  Google Scholar 

  25. Park Y, Yang J, Zhang H, Chen X, Zhang C (2011) Effect of PAR2 in regulating TNF-alpha and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111–123. doi:10.1007/s00395-010-0129-9

    Article  PubMed  CAS  Google Scholar 

  26. Petznick A (2011) Insulin management of type 2 diabetes mellitus. Am Fam Physician 84:183–190

    PubMed  Google Scholar 

  27. Robich MP, Osipov RM, Nezafat R, Feng J, Clements RT, Bianchi C, Boodhwani M, Coady MA, Laham RJ, Sellke FW (2010) Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation 122:S142–S149. doi:10.1161/CIRCULATIONAHA.109.920132

    Article  PubMed  CAS  Google Scholar 

  28. Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104:5–21. doi:10.1007/s00395-008-0760-x

    Article  PubMed  CAS  Google Scholar 

  29. Setty S, Sun W, Tune JD (2003) Coronary blood flow regulation in the prediabetic metabolic syndrome. Basic Res Cardiol 98:416–423. doi:10.1007/s00395-003-0418-7

    Article  PubMed  Google Scholar 

  30. Sodha NR, Boodhwani M, Clements RT, Xu SH, Khabbaz KR, Sellke FW (2008) Increased antiangiogenic protein expression in the skeletal muscle of diabetic swine and patients. Arch Surg 143:463–470. doi:10.1001/archsurg.143.5.463

    Article  PubMed  CAS  Google Scholar 

  31. Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, Bianchi C, Sellke FW (2009) Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol Heart Circ Physiol 296:H428–H434. doi:10.1152/ajpheart.00283.2008

    Article  PubMed  CAS  Google Scholar 

  32. Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138:397–402

    PubMed  CAS  Google Scholar 

  33. Varga O, Harangi M, Olsson IA, Hansen AK (2010) Contribution of animal models to the understanding of the metabolic syndrome: a systematic overview. Obes Rev 11:792–807. doi:10.1111/j.1467-789X.2009.00667.x

    Article  PubMed  CAS  Google Scholar 

  34. Volzke H, Henzler J, Menzel D, Robinson DM, Hoffmann W, Vogelgesang D, John U, Motz W, Rettig R (2007) Outcome after coronary artery bypass graft surgery, coronary angioplasty and stenting. Int J Cardiol 116:46–52. doi:10.1016/j.ijcard.2006.02.008

    Article  PubMed  Google Scholar 

  35. Wolkart G, Schrammel A, Dorffel K, Haemmerle G, Zechner R, Mayer B (2011) Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARalpha agonist. Br J Pharmacol. doi:10.1111/j.1476-5381.2011.01490.x (Epub ahead of print)

  36. Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y (2011) The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 106:925–952. doi:10.1007/s00395-011-0216-6

    Article  PubMed  CAS  Google Scholar 

  37. Zhang H, Potter BJ, Cao JM, Zhang C (2011) Interferon-gamma induced adipose tissue inflammation is linked to endothelial dysfunction in type 2 diabetic mice. Basic Res Cardiol 106:1135–1145. doi:10.1007/s00395-011-0212-x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by grants from the National Heart, Lung, and Blood Institute (R01HL46716, R01HL69024, and R01HL85647, Dr. Sellke), NIH Training grant 5T32-HL076134 (Dr. Lassaletta), NIH Training grant 5T32-HL094300 (Dr. Chu, Dr. Elmadhun), NIH Training grant T32HL007734 (Dr. Robich), and through the Thoracic Surgery Foundation for Research and Education Fellowship (Dr. Lassaletta). We would like to thank the animal facility staff at the Rhode Island Hospital.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Sellke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassaletta, A.D., Chu, L.M., Robich, M.P. et al. Overfed Ossabaw swine with early stage metabolic syndrome have normal coronary collateral development in response to chronic ischemia. Basic Res Cardiol 107, 243 (2012). https://doi.org/10.1007/s00395-012-0243-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0243-y

Keywords

Navigation