Abstract
Classically (M1) and alternatively (M2) activated macrophage subsets play differential roles in left ventricular remodeling after myocardial infarction (MI). The precise mechanism underlying the regulation of M1/M2 polarization during MI is unknown. We hypothesized that class A scavenger receptor (SR-A), a key modulator of inflammation, may steer macrophage polarization, which in turn influences cardiomyocytes necrosis after MI. MI was induced in wild type (WT) and SR-A deficient (SR-A−/−) mice by left anterior descending coronary artery ligation. Cardiac function deterioration, ventricular dilatation and fibrosis were all exacerbated in SR-A−/− mice following MI compared to WT littermates. Meanwhile, enhanced M1 macrophage polarization was observed in SR-A−/− mice, along with increased production of M1 signature cytokines including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) as demonstrated by immunohistochemistry, flow cytometry, quantitative real-time PCR, and ELISA assays. Moreover, activation of the activated apoptosis signal regulating kinase 1 (ASK1)/p38 mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) signaling pathway was markedly elevated in SR-A−/− animals post-MI. Most importantly, transplantation using bone marrow from SR-A+/+ mice partially restored M1 macrophages and significantly augmented left ventricular fractional shortening in SR-A−/− mice. SR-A attenuated MI-induced cardiac remodeling by suppressing macrophage polarization toward a skewed M1 phenotype, reducing secretion of IL-1β, IL-6, and TNF-α, and dampening the ASK1/p38/NF-κB signaling pathway. Therefore, SR-A may exert a protective effect against MI, which may represent a new interventional target for treatment of post-infarct remodeling and subsequent heart failure.
Similar content being viewed by others
References
Amiel E, Acker JL, Collins RM, Berwin B (2009) Uncoupling scavenger receptor A-mediated phagocytosis of bacteria from endotoxic shock resistance. Infect Immun 77:4567–4573. doi:10.1128/IAI.00727-09
Ben JJ, Gao S, Zhu XD, Zheng Y, Zhuang Y, Bai H, Xu Y, Ji Y, Sha JH, He ZG, Chen Q (2009) Glucose-regulated protein 78 inhibits scavenger receptor A-mediated internalization of acetylated low density lipoprotein. J Mol Cell Cardiol 47:646–655. doi:10.1016/j.yjmcc.2009.08.011
Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261. doi:10.1093/cvr/cvp033
Bramos D, Ikonomidis I, Tsirikos N, Kottis G, Kostopoulou V, Pamboucas C, Papadopoulou E, Venetsanou K, Giatrakos N, Yang GZ, Nihoyannopoulos P, Toumanidis S (2008) The association of coronary flow changes and inflammatory indices to ischaemia-reperfusion microvascular damage and left ventricular remodelling. Basic Res Cardiol 103:345–355. doi:10.1007/s00395-008-0720-5
Cao ZJ, Hu YL, Wu W, Ha TZ, Kelley J, Deng CL, Chen Q, Li CF, Li JH, Li YH (2009) The TIR/BB-loop mimetic AS-1 protects the myocardium from ischaemia/reperfusion injury. Cardiovasc Res 84:442–451. doi:10.1093/cvr/cvp234
Chen Y, Wang X, Ben JJ, Yue S, Bai H, Guan XX, Bai XM, Jiang L, Ji Y, Fan LM, Chen Q (2006) The di-leucine motif contributes to class A scavenger receptor-mediated internalization of acetylated lipoproteins. Arterioscler Thromb Vasc Biol 26:1317–1322. doi:10.1161/01.ATV.0000220171.50282.0c
Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, Frey N (2010) FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105:301–313. doi:10.1007/s00395-009-0046-y
Choudhury RP, Lee JM, Greaves DR (2005) Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med 2:309–315. doi:10.1038/ncpcardio0195
Conraads VM, Vrints CJ, Rodrigus IE, Hoymans VY, Van Craenenbroeck EM, Bosmans J, Claeys MJ, Van Herck P, Linke A, Schuler G, Adams V (2010) Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: a mechanism contributing to myocardial remodeling? Basic Res Cardiol 105:219–226. doi:10.1007/s00395-009-0068-5
den Uil CA, Lagrand WK, Valk SDA, Spronk PE, Simoons ML (2009) Management of cardiogenic shock: focus on tissue perfusion. Curr Probl Cardiol 34:330–349. doi:10.1016/j.cpcardiol.2009.04.002
Ding L, Dong L, Chen X, Zhang L, Xu X, Ferro A, Xu B (2009) Increased expression of integrin-linked kinase attenuates left ventricular remodeling and improves cardiac function after myocardial infarction. Circulation 120:764–773. doi:10.1161/CIRCULATIONAHA.109.870725
Dominguez PM, Ardavin C (2010) Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234:90–104. doi:10.1111/j.0105-2896.2009.00876.x
dos Santos L, Santos AA, Goncalves GA, Krieger JE, Tucci PJF (2010) Bone marrow cell therapy prevents infarct expansion and improves border zone remodeling after coronary occlusion in rats. Int J Cardiol 145:34–39. doi:10.1016/j.ijcard.2009.06.008
Ertl G, Frantz S (2005) Healing after myocardial infraction. Cardiovasc Res 66:22–32. doi:10.1016/j.cardiores.2005.01.011
Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47. doi:10.1016/S0008-6363(01)00434-5
Frieler RA, Meng H, Duan SZ, Berger S, Schutz G, He Y, Xi G, Wang MM, Mortensen RM (2011) Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke 42:179–185. doi:10.1161/STROKEAHA.110.598441
Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi:10.1038/nri1733
Greaves DR, Gordon S (2009) The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res 50:S282–S286. doi:10.1194/jlr.R800066-JLR200
Grewal T, Priceputu E, Davignon J, Bernier L (2001) Identification of a gamma-interferon-responsive element in the promoter of the human macrophage scavenger receptor A gene. Arterioscler Thromb Vasc Biol 21:825–831. doi:10.1161/01.ATV.21.5.825
Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4
Henning RJ, Shariff M, Eadula U, Alvarado F, Vasko M, Sanberg PR, Sanberg CD, Delostia V (2008) Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev 17:1207–1219. doi:10.1089/scd.2008.0023
Heusch G, Kleinbongard P, Bose D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization from bedside to bench and back to bedside. Circulation 120:1822–1836. doi:10.1161/CIRCULATIONAHA.109.888784
Hu Y, Li T, Wang Y, Li J, Guo L, Wu M, Shan X, Que L, Ha T, Chen Q, Kelley J, Li Y (2009) Tollip attenuated the hypertrophic response of cardiomyocytes induced by IL-1beta. Front Biosci 14:2747–2756. doi:10.2741/4011
Javadov S, Rajapurohitam V, Kilic A, Hunter JC, Zeidan A, Faruq NS, Escobales N, Karmazyn M (2011) Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 106:99–109. doi:10.1007/s00395-010-0122-3
Kleinbongard P, Heusch G, Schulz R (2010) TNF alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002
Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22:317–326. doi:10.1681/ASN.2009060615
Lim WS, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I (2008) Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117:940–951. doi:10.1161/CIRCULATIONAHA.107.711275
Limmon GV, Arredouani M, McCann KL, Corn Minor RA, Kobzik L, Imani F (2008) Scavenger receptor class-A is a novel cell surface receptor for double-stranded RNA. FASEB J 22:159–167. doi:10.1096/fj.07-8348com
Liu Q, Sargent MA, York AJ, Molkentin JD (2009) ASK1 regulates cardiomyocyte death but not hypertrophy in transgenic mice. Circ Res 105:1110–1117. doi:10.1161/CIRCRESAHA.109.200741
Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol 177:7303–7311
Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–1336. doi:10.1016/j.bbagen.2007.12.011
Mersmann J, Habeck K, Latsch K, Zimmermann R, Jacoby C, Fischer JW, Hartmann C, Schrader J, Kirschning CJ, Zacharowski K (2011) Left ventricular dilation in toll-like receptor 2 deficient mice after myocardial ischemia/reperfusion through defective scar formation. Basic Res Cardiol 106:89–98. doi:10.1007/s00395-010-0127-y
Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 363:245–266
Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445. doi:10.1161/CIRCULATIONAHA.109.916346
Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MJ, Weissleder R (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218–1225. doi:10.1161/01.RES.0000265064.46075.31
Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047. doi:10.1084/jem.20070885
Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the working group of cellular biology of the heart of the European society of cardiology. Cardiovasc Res 87:406–423. doi:10.1093/cvr/cvq129
Pluddemann A, Hoe JC, Makepeace K, Moxon ER, Gordon S (2009) The macrophage scavenger receptor A is host-protective in experimental meningococcal septicaemia. Plos Pathog 5:e1000297. doi:10.1371/journal.ppat.1000297
Robbins CS, Swirski FK (2010) The multiple roles of monocyte subsets in steady state and inflammation. Cell Mol Life Sci 67:2685–2693. doi:10.1007/s00018-010-0375-x
Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700. doi:10.1016/S0008-6363(02)00319-X
Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357. doi:10.1096/fj.02-0975fje
Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2 yin and yang in myocardial infarction? Circulation 119:1355–1357. doi:10.1161/CIRCULATIONAHA.108.846105
Skyschally A, Schulz R, Heusch G (2008) Pathophysiology of myocardial infarction. Protection by ischemic pre- and postconditioning. Herz 33:88–100. doi:10.1007/s00059-008-3101-9
Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs no causal role for RISK activation. Circ Res 104:15–U35. doi:10.1161/CIRCRESAHA.108.186429
Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Horiuchi S, Takahashi K, Kruijt JK, van Berkel TJC, Steinbrecher UP, Ishibashi S, Maeda N, Gordon S, Kodama T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296. doi:10.1038/386292a0
Troidl C, Mollmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsasser A (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485–3496. doi:10.1111/j.1582-4934.2009.00707.x
Tsujita K, Kaikita K, Hayasaki T, Honda T, Kobayashi H, Sakashita N, Suzuki H, Kodama T, Ogawa H, Takeya M (2007) Targeted deletion of class A macrophage scavenger receptor increases the risk of cardiac rupture after experimental myocardial infarction. Circulation 115:1904–1911. doi:10.1161/CIRCULATIONAHA.106.671198
Usui HK, Shikata K, Sasaki M, Okada S, Matsuda M, Shikata Y, Ogawa D, Kido Y, Nagase R, Yozai K, Ohga S, Tone A, Wada J, Takeya M, Horiuchi S, Kodama T, Makino H (2007) Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 56:363–372. doi:10.2337/db06-0359
van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJA (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829. doi:10.2353/ajpath.2007.060547
Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto L, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K (2003) Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Nati Acad Sci USA 100:15883–15888. doi:10.1072/pnas.2136717100
Zhu XD, Zhuang Y, Ben JJ, Qian LL, Huang HP, Bai H, Sha JH, He ZG, Chen Q (2011) Caveolae- dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. J Biol Chem 286:8231–8239. doi:10.1074/jbc.M110.145888
Acknowledgments
This work was supported by National Natural Science Foundation of China Grants (NO. 30730044 and 81070120 to Qi Chen), National Basic Research Program (973) (No. 2011CB503903 to Yong Ji), and National Natural Science Foundation of China (NO.81000118 to Jingjing Ben).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Hu, Y., Zhang, H., Lu, Y. et al. Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization. Basic Res Cardiol 106, 1311–1328 (2011). https://doi.org/10.1007/s00395-011-0204-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00395-011-0204-x