Skip to main content

Advertisement

Log in

Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The present study investigates why shedding of the endothelial glycocalyx occurs both in patients undergoing on- and off-pump coronary artery bypass surgery. Release of atrial natriuretic peptide (ANP) was of special interest, because ANP initiates shedding ex vivo. Three major constituents of the glycocalyx (syndecan-1, heparan sulfate and hyaluronan) were measured in arterial blood of patients undergoing coronary artery bypass surgery with (n = 15) and without (n = 15) cardiopulmonary bypass at various phases of the procedure. Additionally, the levels of the inflammatory cytokines interleukin (IL)-6, -8, and -10 and of ANP were evaluated. Elevations of all three components of the glycocalyx were detected in blood of patients undergoing on- (maximum increases: syndecan-1 15-fold, heparan sulfate ninefold, hyaluronan fivefold basal) and off-pump (maximum increases: syndecan-1 fourfold, heparan sulfate twofold, hyaluronan threefold basal) coronary artery surgery. Maximum ANP concentrations increased three- and fourfold basal in on- and off-pump coronary artery surgery, respectively (P < 0.05). There were significant increases in the three cytokine concentrations in both on- (maximum increases: IL-6 146-fold, IL-8 23-fold, IL-10 238-fold basal) and off-pump (maximum increases: IL-6 77-fold, IL-8 eightfold, IL-10 58-fold basal) coronary artery surgery. However, the elevations of ANP preceded those of the cytokines and coincided with or even preceded shedding of the human endothelial glycocalyx in both surgical procedures. These data suggest that release of ANP may lead to perturbation of the endothelial glycocalyx in both on- and off-pump coronary artery bypass surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahluwalia A, MacAllister RJ, Hobbs AJ (2004) Vascular actions of natriuretic peptides. Cyclic GMP-dependent and -independent mechanisms. Basic Res Cardiol 99:83–89. doi:10.1007/s00395-004-0459-6

    Article  PubMed  CAS  Google Scholar 

  2. Baxter GF (2004) The natriuretic peptides. Basic Res Cardiol 99:71–75. doi:10.1007/s00395-004-0457-8

    Article  PubMed  CAS  Google Scholar 

  3. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M (2010) Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 87:300–310. doi:10.1093/cvr/cvq137

    Article  PubMed  CAS  Google Scholar 

  4. Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701. doi:10.1007/s00395-010-0118-z

    Article  PubMed  CAS  Google Scholar 

  5. Bruegger D, Rehm M, Abicht J, Paul JO, Stoeckelhuber M, Pfirrmann M, Reichart B, Becker BF, Christ F (2009) Shedding of the endothelial glycocalyx during cardiac surgery: on-pump versus off-pump coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 138:1445–1447. doi:10.1016/j.jtcvs.2008.07.063

    Article  PubMed  Google Scholar 

  6. Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P, Becker BF (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999. doi:10.1152/ajpheart.00218.2005

    Article  PubMed  CAS  Google Scholar 

  7. Bruegger D, Rehm M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2008) Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts. Crit Care 12:R73. doi:10.1186/cc6913

    Article  PubMed  Google Scholar 

  8. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89. doi:10.1007/s00395-008-0749-5

    Article  PubMed  CAS  Google Scholar 

  9. Chappell D, Jacob M, Hofmann-Kiefer K, Bruegger D, Rehm M, Conzen P, Welsch U, Becker BF (2007) Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology 107:776–784. doi:10.1097/01.anes.0000286984.39328.96

    Article  PubMed  CAS  Google Scholar 

  10. Chappell D, Jacob M, Paul O, Mehringer L, Newman W, Becker BF (2008) Impaired glycocalyx barrier properties and increased capillary tube haematocrit. J Physiol 586:4585–4586. doi:10.1113/jphysiol.2008.160648

    Article  PubMed  CAS  Google Scholar 

  11. Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M, Conzen P, Becker BF (2009) The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 104:1313–1317. doi:10.1161/CIRCRESAHA.108.187831

    Article  PubMed  CAS  Google Scholar 

  12. Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23:1541–1547. doi:10.1161/01.ATV.0000085630.24353.3D

    Article  PubMed  CAS  Google Scholar 

  13. Curry FR (2005) Atrial natriuretic peptide: an essential physiological regulator of transvascular fluid, protein transport, and plasma volume. J Clin Invest 115:1458–1461. doi:10.1172/JCI25417

    Article  PubMed  CAS  Google Scholar 

  14. Curry FR, Rygh CB, Karlsen T, Wiig H, Adamson RH, Clark JF, Lin YC, Gassner B, Thorsen F, Moen I, Tenstad O, Kuhn M, Reed RK (2010) Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume. J Physiol 588:325–339. doi:10.1113/jphysiol.2009.180463

    Article  PubMed  CAS  Google Scholar 

  15. Czarnowska E, Karwatowska-Prokopczuk E (1995) Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Basic Res Cardiol 90:357–364. doi:10.1007/BF00788496

    Article  PubMed  CAS  Google Scholar 

  16. Henry CB, Duling BR (2000) TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 279:H2815–H2823

    PubMed  CAS  Google Scholar 

  17. Jacob M, Bruegger D, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586. doi:10.1016/j.cardiores.2006.11.021

    Article  PubMed  CAS  Google Scholar 

  18. Kuhn M (2004) Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol 99:76–82. doi:10.1007/s00395-004-0460-0

    Article  PubMed  CAS  Google Scholar 

  19. Massoudy P, Zahler S, Becker BF, Braun SL, Barankay A, Meisner H (2001) Evidence for inflammatory responses of the lungs during coronary artery bypass grafting with cardiopulmonary bypass. Chest 119:31–36. doi:10.1378/chest.119.1.31

    Article  PubMed  CAS  Google Scholar 

  20. Mulivor AW, Lipowsky HH (2004) Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 286:H1672–H1680. doi:10.1152/ajpheart.00832.2003

    Article  PubMed  CAS  Google Scholar 

  21. Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M (2008) Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 30:623–627. doi:10.1097/SHK.0b013e3181777da3

    Article  PubMed  CAS  Google Scholar 

  22. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486. doi:10.2337/diabetes.55.02.06.db05-1103

    Article  PubMed  CAS  Google Scholar 

  23. Parish CR (2005) Heparan sulfate and inflammation. Nat Immunol 6:861–862. doi:10.1038/ni0905-861

    Article  PubMed  CAS  Google Scholar 

  24. Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6:633–643. doi:10.1038/nri1918

    Article  PubMed  CAS  Google Scholar 

  25. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666. doi:10.1007/s004240000307

    Article  PubMed  CAS  Google Scholar 

  26. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Reichart B, Peter K, Becker BF (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906. doi:10.1161/CIRCULATIONAHA.106.684852

    Article  PubMed  CAS  Google Scholar 

  27. Rehm M, Haller M, Orth V, Kreimeier U, Jacob M, Dressel H, Mayer S, Brechtelsbauer H, Finsterer U (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856

    Article  PubMed  CAS  Google Scholar 

  28. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359. doi:10.1007/s00424-007-0212-8

    Article  PubMed  CAS  Google Scholar 

  29. Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M (2005) Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest 115:1666–1674. doi:10.1172/JCI23360

    Article  PubMed  CAS  Google Scholar 

  30. Schreier B, Borner S, Volker K, Gambaryan S, Schafer SC, Kuhlencordt P, Gassner B, Kuhn M (2008) The heart communicates with the endothelium through the guanylyl cyclase-A receptor: acute handling of intravascular volume in response to volume expansion. Endocrinology 149:4193–4199. doi:10.1210/en.2008-0212

    Article  PubMed  CAS  Google Scholar 

  31. Svennevig K, Hoel T, Thiara A, Kolset S, Castelheim A, Mollnes T, Brosstad F, Fosse E, Svennevig J (2008) Syndecan-1 plasma levels during coronary artery bypass surgery with and without cardiopulmonary bypass. Perfusion 23:165–171. doi:10.1177/0267659108098215

    Article  PubMed  CAS  Google Scholar 

  32. Vink H, Constantinescu AA, Spaan JA (2000) Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101:1500–1502. doi:10.1161/01.CIR.101.13.1500

    PubMed  CAS  Google Scholar 

  33. Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910. doi:10.1038/ni1233

    Article  PubMed  CAS  Google Scholar 

  34. Yancy CW (2007) Benefit-risk assessment of nesiritide in the treatment of acute decompensated heart failure. Drug Saf 30:765–781

    Article  PubMed  CAS  Google Scholar 

  35. Zahler S, Massoudy P, Hartl H, Hahnel C, Meisner H, Becker BF (1999) Acute cardiac inflammatory responses to postischemic reperfusion during cardiopulmonary bypass. Cardiovasc Res 41:722–730. doi:10.1016/S0008-6363(98)00229-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed using departmental research funding provided by the Government of Bavaria (Bavarian State Ministry of Science, Research, and the Arts, Munich) and a competitive grant of the Friedrich-Baur-Foundation, Munich, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Bruegger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruegger, D., Schwartz, L., Chappell, D. et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol 106, 1111–1121 (2011). https://doi.org/10.1007/s00395-011-0203-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0203-y

Keywords

Navigation