Abstract
Excitation–contraction coupling (ECC) in cardiac myocytes involves triggering of Ca2+ release from the sarcoplasmic reticulum (SR) by L-type Ca channels, whose activity is strongly influenced by action potential (AP) profile. The contribution of Ca2+ entry via the Na+/Ca2+ exchanger (NCX) to trigger SR Ca2+ release during ECC in response to an AP remains uncertain. To isolate the contribution of NCX to SR Ca2+ release, independent of effects on SR Ca2+ load, Ca2+ release was determined by recording Ca2+ spikes using confocal microscopy on patch-clamped rat ventricular myocytes with [Ca2+]i fixed at 150 nmol/L. In response to AP clamps, normalized Ca2+ spike amplitudes (ΔF/F 0) increased sigmoidally and doubled as [Na+]i was elevated from 0 to 20 mmol/L with an EC50 of ~10 mmol/L. This [Na+]i-dependence was independent of I Na as well as SR Ca2+ load, which was unchanged under our experimental conditions. However, NCX inhibition using either KB-R7943 or XIP reduced ΔF/F 0 amplitude in myocytes with 20 mmol/L [Na+]i, but not with 5 mmol/L [Na+]i. SR Ca2+ release was complete before the membrane repolarized to −15 mV, indicating Ca2+ entry into the dyad (not reduced extrusion) underlies [Na+]i-dependent enhancement of ECC. Because I Ca,L inhibition with 50 mmol/L Cd2+ abolished Ca2+ spikes, our results demonstrate that during cardiac APs, NCX enhances SR Ca2+ release by synergistically increasing the efficiency of I Ca,L-mediated ECC.
This is a preview of subscription content, access via your institution.




References
Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium–calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53. doi:10.1161/01.RES.0000080932.98903.D8
Bassani JW, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476:279–293
Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, von Kienlin M, Harre K, Hahn D, Neubauer S (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274. doi:10.1016/S0735-1097(02)02160-5
Berlin JR, Cannell MB, Lederer WJ (1987) Regulation of twitch tension in sheep cardiac Purkinje fibers during calcium overload. Am J Physiol 253:H1540–H1547
Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205. doi:10.1038/415198a
Bers DM (2002) Excitation–contraction coupling and cardiac contractile force. Kluwer, Dordrecht
Bouchard RA, Clark RB, Giles WR (1993) Role of sodium–calcium exchange in activation of contraction in rat ventricle. J Physiol 472:391–413
Chin TK, Spitzer KW, Philipson KD, Bridge JH (1993) The effect of exchanger inhibitory peptide (XIP) on sodium–calcium exchange current in guinea pig ventricular cells. Circ Res 72:497–503. doi:10.1161/01.RES.72.3.497
Choi HS, Eisner DA (1999) The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J Physiol 515(Pt 1):109–118. doi:10.1111/j.1469-7793.1999.109ad.x
Copello JA, Barg S, Onoue H, Fleischer S (1997) Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys J 73:141–156. doi:10.1016/S0006-3495(97)78055-X
Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J Physiol 539:133–143. doi:10.1113/jphysiol.2001.012940
Evans AM, Cannell MB (1997) The role of L-type Ca2+ current and Na+ current-stimulated Na/Ca exchange in triggering SR calcium release in guinea-pig cardiac ventricular myocytes. Cardiovasc Res 35:294–302. doi:10.1016/S0008-6363(97)00117-X
Ferrier GR, Howlett SE (2001) Cardiac excitation–contraction coupling: role of membrane potential in regulation of contraction. Am J Physiol Heart Circ Physiol 280:H1928–H1944
Goldhaber JI, Lamp ST, Walter DO, Garfinkel A, Fukumoto GH, Weiss JN (1999) Local regulation of the threshold for calcium sparks in rat ventricular myocytes: role of sodium–calcium exchange. J Physiol 520(Pt 2):431–438. doi:10.1111/j.1469-7793.1999.00431.x
Griffiths H, MacLeod KT (2003) The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release. J Gen Physiol 121:353–373. doi:10.1085/jgp.200208764
Gyorke I, Gyorke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75:2801–2810. doi:10.1016/S0006-3495(98)77723-9
Henderson SA, Goldhaber JI, So JM, Han T, Motter C, Ngo A, Chantawansri C, Ritter MR, Friedlander M, Nicoll DA, Frank JS, Jordan MC, Roos KP, Ross RS, Philipson KD (2004) Functional adult myocardium in the absence of Na+–Ca2+ exchange: cardiac-specific knockout of NCX1. Circ Res 95:604–611. doi:10.1161/01.RES.0000142316.08250.68
Hilgemann DW, Matsuoka S, Nagel GA, Collins A (1992) Steady-state and dynamic properties of cardiac sodium–calcium exchange. Sodium-dependent inactivation. J Gen Physiol 100:905–932. doi:10.1085/jgp.100.6.905
Hobai IA, Bates JA, Howarth FC, Levi AJ (1997) Inhibition by external Cd2+ of Na/Ca exchange and L-type Ca channel in rabbit ventricular myocytes. Am J Physiol 272:H2164–H2172
Hobai IA, O’Rourke B (2000) Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure. Circ Res 87:690–698. doi:10.1161/01.RES.87.8.690
Huang J, Hove-Madsen L, Tibbits GF (2008) Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes. Am J Physiol Cell Physiol 294:C516–C525. doi:10.1152/ajpcell.00417.2007
Larbig R, Torres N, Bridge JH, Goldhaber JI, Philipson KD (2010) Activation of reverse Na+–Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J Physiol 588:3267–3276. doi:10.1113/jphysiol.2010.187708
Leblanc N, Hume JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372–376. doi:10.1126/science.2158146
Lipp P, Niggli E (1994) Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J Physiol 474:439–446
Litwin SE, Li J, Bridge JH (1998) Na–Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J 75:359–371. doi:10.1016/S0006-3495(98)77520-4
Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268:1042–1045. doi:10.1126/science.7754383
Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392. doi:10.1007/s00395-007-0666-z
Maier LS, Pieske B, Allen DG (1997) Influence of stimulation frequency on [Na+]i and contractile function in Langendorff-perfused rat heart. Am J Physiol 273:H1246–H1254
Matsuoka S, Hilgemann DW (1992) Steady-state and dynamic properties of cardiac sodium–calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol 100:963–1001. doi:10.1085/jgp.100.6.963
Matsuoka S, Nicoll DA, He Z, Philipson KD (1997) Regulation of cardiac Na(+)–Ca2+ exchanger by the endogenous XIP region. J Gen Physiol 109:273–286. doi:10.1085/jgp.109.2.273
Mattiello JA, Margulies KB, Jeevanandam V, Houser SR (1998) Contribution of reverse-mode sodium–calcium exchange to contractions in failing human left ventricular myocytes. Cardiovasc Res 37:424–431. doi:10.1016/S0008-6363(97)00271-X
Miura Y, Kimura J (1989) Sodium–calcium exchange current. Dependence on internal Ca and Na and competitive binding of external Na and Ca. J Gen Physiol 93:1129–1145. doi:10.1085/jgp.93.6.1129
Nabauer M, Callewaert G, Cleemann L, Morad M (1989) Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244:800–803. doi:10.1126/science.2543067
Neco P, Rose B, Huynh N, Zhang R, Bridge JH, Philipson KD, Goldhaber JI (2010) Sodium–calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys J 99:755–764. doi:10.1016/j.bpj.2010.04.071
Nuss HB, Houser SR (1992) Sodium–calcium exchange-mediated contractions in feline ventricular myocytes. Am J Physiol 263:H1161–H1169
O’Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84:562–570. doi:10.1161/01.RES.84.5.562
Ottolia M, Philipson KD, John S (2004) Conformational changes of the Ca2+ regulatory site of the Na+–Ca2+ exchanger detected by FRET. Biophys J 87:899–906. doi:10.1529/biophysj.104.043471
Pandit SV, Clark RB, Giles WR, Demir SS (2001) A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys J 81:3029–3051. doi:10.1016/S0006-3495(01)75943-7
Perez NG, Villa-Abrille MC, Aiello EA, Dulce RA, Cingolani HE, Camilion de Hurtado MC (2003) A low dose of angiotensin II increases inotropism through activation of reverse Na(+)/Ca(2+) exchange by endothelin release. Cardiovasc Res 60:589–597. doi:10.1016/j.cardiores.2003.09.004
Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22:549–558. doi:10.1016/S0896-6273(00)80709-6
Pieske B, Maier LS, Piacentino V 3rd, Weisser J, Hasenfuss G, Houser S (2002) Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 106:447–453. doi:10.1161/01.CIR.0000023042.50192.F4
Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019. doi:10.1161/01.RES.85.11.1009
Remme CA, Verkerk AO, Hoogaars WM, Aanhaanen WT, Scicluna BP, Annink C, van den Hoff MJ, Wilde AA, van Veen TA, Veldkamp MW, de Bakker JM, Christoffels VM, Bezzina CR (2009) The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res Cardiol 104:511–522. doi:10.1007/s00395-009-0012-8
Reuter H, Henderson SA, Han T, Ross RS, Goldhaber JI, Philipson KD (2002) The Na+–Ca2+ exchanger is essential for the action of cardiac glycosides. Circ Res 90:305–308. doi:10.1161/hh0302.104562
Sah R, Ramirez RJ, Backx PH (2002) Modulation of Ca(2+) release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation–contraction coupling. Circ Res 90:165–173. doi:10.1161/hh0202.103315
Sah R, Ramirez RJ, Kaprielian R, Backx PH (2001) Alterations in action potential profile enhance excitation–contraction coupling in rat cardiac myocytes. J Physiol 533:201–214. doi:10.1111/j.1469-7793.2001.0201b.x
Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 546:5–18. doi:10.1113/jphysiol.2002.026468
Satoh H, Delbridge LM, Blatter LA, Bers DM (1996) Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J 70:1494–1504. doi:10.1016/S0006-3495(96)79711-4
Scriven DR, Dan P, Moore ED (2000) Distribution of proteins implicated in excitation–contraction coupling in rat ventricular myocytes. Biophys J 79:2682–2691. doi:10.1016/S0006-3495(00)76506-4
Sedova M, Dedkova EN, Blatter LA (2006) Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol 291:C840–C850. doi:10.1152/ajpcell.00619.2005
Sham JS, Cleemann L, Morad M (1992) Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na(+)–Ca2+ exchange. Science 255:850–853. doi:10.1126/science.1311127
Shannon TR, Bers DM (1997) Assessment of intra-SR free [Ca] and buffering in rat heart. Biophys J 73:1524–1531. doi:10.1016/S0006-3495(97)78184-0
Sipido KR, Maes M, Van de Werf F (1997) Low efficiency of Ca2+ entry through the Na(+)–Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na(+)–Ca2+ exchange. Circ Res 81:1034–1044. doi:10.1161/01.RES.81.6.1034
Sobie EA, Cannell MB, Bridge JH (2008) Allosteric activation of Na+–Ca2+ exchange by L-type Ca2+ current augments the trigger flux for SR Ca2+ release in ventricular myocytes. Biophys J 94:L54–L56. doi:10.1529/biophysj.107.127878
Song LS, Sham JS, Stern MD, Lakatta EG, Cheng H (1998) Direct measurement of SR release flux by tracking ‘Ca2+ spikes’ in rat cardiac myocytes. J Physiol 512(Pt 3):677–691. doi:10.1111/j.1469-7793.1998.677bd.x
Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H (1994) Gene expression of the cardiac Na(+)–Ca2+ exchanger in end-stage human heart failure. Circ Res 75:443–453. doi:10.1161/01.RES.75.3.443
Tanaka H, Nishimaru K, Aikawa T, Hirayama W, Tanaka Y, Shigenobu K (2002) Effect of SEA0400, a novel inhibitor of sodium–calcium exchanger, on myocardial ionic currents. Br J Pharmacol 135:1096–1100. doi:10.1038/sj.bjp.0704574
Toischer K, Lehnart SE, Tenderich G, Milting H, Korfer R, Schmitto JD, Schondube FA, Kaneko N, Loughrey CM, Smith GL, Hasenfuss G, Seidler T (2010) K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res Cardiol 105:279–287. doi:10.1007/s00395-009-0057-8
Varro A, Negretti N, Hester SB, Eisner DA (1993) An estimate of the calcium content of the sarcoplasmic reticulum in rat ventricular myocytes. Pflugers Arch 423:158–160. doi:10.1007/BF00374975
Viatchenko-Karpinski S, Gyorke S (2001) Modulation of the Ca(2+)-induced Ca(2+) release cascade by beta-adrenergic stimulation in rat ventricular myocytes. J Physiol 533:837–848. doi:10.1111/j.1469-7793.2001.t01-1-00837.x
Viatchenko-Karpinski S, Terentyev D, Jenkins LA, Lutherer LO, Gyorke S (2005) Synergistic interactions between Ca2+ entries through L-type Ca2+ channels and Na+–Ca2+ exchanger in normal and failing rat heart. J Physiol 567:493–504. doi:10.1113/jphysiol.2005.091280
Vornanen M, Shepherd N, Isenberg G (1994) Tension-voltage relations of single myocytes reflect Ca release triggered by Na/Ca exchange at 35 degrees C but not 23 degrees C. Am J Physiol 267:C623–C632
Wasserstrom JA, Vites AM (1996) The role of Na(+)–Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes. J Physiol 493(Pt 2):529–542
Watano T, Kimura J, Morita T, Nakanishi H (1996) A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol 119:555–563
Weber CR, Ginsburg KS, Bers DM (2003) Cardiac submembrane [Na+] transients sensed by Na+–Ca2+ exchange current. Circ Res 92:950–952. doi:10.1161/01.RES.0000071747.61468.7F
Weber CR, Piacentino V 3rd, Ginsburg KS, Houser SR, Bers DM (2002) Na(+)–Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ Res 90:182–189. doi:10.1161/hh0202.103940
Weber CR, Piacentino V 3rd, Houser SR, Bers DM (2003) Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 108:2224–2229. doi:10.1161/01.CIR.0000095274.72486.94
Weisser-Thomas J, Piacentino V 3rd, Gaughan JP, Margulies K, Houser SR (2003) Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. Cardiovasc Res 57:974–985. doi:10.1016/S0008-6363(02)00732-0
Yang Z, Pascarel C, Steele DS, Komukai K, Brette F, Orchard CH (2002) Na+–Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circ Res 91:315–322. doi:10.1161/01.RES.0000030180.06028.23
Yao A, Su Z, Nonaka A, Zubair I, Lu L, Philipson KD, Bridge JH, Barry WH (1998) Effects of overexpression of the Na+–Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes. Circ Res 82:657–665. doi:10.1161/01.RES.82.6.657
Acknowledgments
This work was supported by grants from the Heart and Stroke Foundation of Ontario (T-6485) and the Canadian Institutes of Health Research (MOP-62954). PHB is a Career Investigator with the Heart and Stroke Foundation of Ontario. RJR is the recipient of a Heart and Stroke Foundation of Canada Doctoral Research Award, and a Peterborough K.M. Hunter Graduate Studentship (University of Toronto, Faculty of Medicine).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ramirez, R.J., Sah, R., Liu, J. et al. Intracellular [Na+] modulates synergy between Na+/Ca2+ exchanger and L-type Ca2+ current in cardiac excitation–contraction coupling during action potentials. Basic Res Cardiol 106, 967–977 (2011). https://doi.org/10.1007/s00395-011-0202-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00395-011-0202-z
Keywords
- Cardiac excitation–contraction coupling
- Na+/Ca2+ exchanger
- Ca2+ spike