Skip to main content

Advertisement

Log in

Remodeling of inward rectifying K+ currents in rat atrial myocytes by overexpression of A1-adenosine receptors

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In rat atrial myocytes GIRK (Kir3) channels can be activated by acetylcholine and adenosine via M2 and A1 receptors coupled to Pertussis-toxin-sensitive G proteins, such as M2R or A1R. Owing to the lower density of A1R, the amplitude of current activated by a saturating concentration (10 μM) of Ado (IK(Ado)) amounts to about 40% of maximum IK(ACh). Adenovirus-driven overexpression of A1R results in an increase in IK(Ado). In a fraction of A1R-overexpressing cells, both ACh and Ado failed to activate GIRK channels. These cells had a large constitutive Ba2+-sensitive inward rectifying background K+ current, which was insensitive to the GIRK channel inhibitor tertiapin (200 nM), suggesting this current component to be carried by IK1 (Kir) channels. This effect of A1R overexpression was reduced by treatment (48 h) with the A1R antagonist DPCPX. siRNA-mediated knockdown of Kir2.1, simultaneously with A1R overexpression, substantially reduced IK1. The mechanisms underlying the upregulation of functional IK1 channels involve activation of the phosphatidylinositol 3-kinase (Pi3K)/Akt (protein kinase B) pathway. Kir2.1 transcripts are not increased in myocytes overexpressing A1R. These data demonstrate that manipulation of the expression level of a G protein-coupled receptor has unpredictable effects on functional expression of proteins that are supposed to be unrelated to the pathway controlled by that GPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balasubramanian S, Johnston RK, Moschella PC, Mani SK, Tuxworth WJ Jr, Kuppuswamy D (2009) mTOR in growth and protection of hypertrophying myocardium. Cardiovasc Hematol Agents Med Chem 7:52–63

    Article  PubMed  CAS  Google Scholar 

  2. Ballard-Croft C, Locklar AC, Keith BJ, Mentzer RM Jr, Lasley RD (2008) Oxidative stress and adenosine A1 receptor activation differentially modulate subcellular cardiomyocyte MAPKs. Am J Physiol Heart Circ Physiol 294:H263–H271. doi:10.1152/ajpheart.01067.2007

    Article  PubMed  CAS  Google Scholar 

  3. Ban K, Cooper AJ, Samuel S, Bhatti A, Patel M, Izumo S, Penninger JM, Backx PH, Oudit GY, Tsushima RG (2008) Phosphatidylinositol 3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning. Circ Res 103:643–653. doi:10.1161/CIRCRESAHA.108.175018

    Article  PubMed  CAS  Google Scholar 

  4. Bardenheuer H, Whelton B, Sparks HV (1987) Adenosine release by the isolated guinea-pig heart in response to isoproterenol, acetylcholine, and acidosis—the minimal role of vascular endothelium. Circ Res 61:594–600

    PubMed  CAS  Google Scholar 

  5. Bechem M, Pott L, Rennebaum H (1983) Atrial muscle-cells from hearts of adult guinea-pigs in culture—a new preparation for cardiac cellular electrophysiology. Eur J Cell Biol 31:366–369

    PubMed  CAS  Google Scholar 

  6. Beckmann C, Rinne A, Littwitz C, Mintert E, Bösche LI, Kienitz MC, Pott L, Bender K (2008) G protein-activated (GIRK) current in rat ventricular myocytes is masked by constitutive inward rectifier current (IK1). Cell Physiol Biochem 21:259–268

    Article  PubMed  CAS  Google Scholar 

  7. Borst MM, Schrader J (1991) Adenine nucleotide release from isolated perfused guinea pig hearts and extracellular formation of adenosine. Circ Res 68:797–806

    PubMed  CAS  Google Scholar 

  8. Bösche LI, Wellner-Kienitz MC, Bender K, Pott L (2003) G protein-independent inhibition of GIRK current by adenosine in rat atrial myocytes overexpressing A1 receptors after adenovirus-mediated gene transfer. J Physiol 550:707–717. doi:10.1113/jphysiol.2003.041962

    Article  PubMed  Google Scholar 

  9. Bünemann M, Liliom K, Brandts BK, Pott L, Tseng JL, Desiderio DM, Sun GP, Miller D, Tigyi G (1996) A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J 15:5527–5534

    PubMed  Google Scholar 

  10. Castanotto D, Li HT, Rossi JJ (2002) Functional siRNA expression from transfected PCR products. RNA 8:1454–1460. doi:10.1017/S1355838202021362

    Article  PubMed  CAS  Google Scholar 

  11. Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103:203–215. doi:10.1007/s00395-007-0687-7

    Article  PubMed  CAS  Google Scholar 

  12. Dascal N (2001) Ion-channel regulation by G proteins. Trends Endocrinol Metab 12:391–398. doi:10.1016/S1043-2760(01)00475-1

    Article  PubMed  CAS  Google Scholar 

  13. de Boer TP, Houtman MJ, Compier M, van der Heyden MA (2010) The mammalian K(IR)2.x inward rectifier ion channel family: expression pattern and pathophysiology. Acta Physiol (Oxford) 199:243–256. doi:10.1111/j.1748-1716.2010.02108.x

    Google Scholar 

  14. Dhamoon AS, Pandit SV, Sarmast F, Parisian KR, Guha P, Li Y, Bagwe S, Taffet SM, Anumonwo JM (2004) Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ Res 94:1332–1339. doi:10.1161/01.RES.0000128408.66946.67

    Article  PubMed  CAS  Google Scholar 

  15. Diaz RJ, Zobel C, Cho HC, Batthish M, Hinek A, Backx PH, Wilson GJ (2004) Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes. Circ Res 95:325–332. doi:10.1161/01.RES.0000137727.34938.35

    Article  PubMed  CAS  Google Scholar 

  16. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens U (2005) The G protein-gated potassium current IK, ACh is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706. doi:10.1161/CIRCULATIONAHA.105.575332

    Article  PubMed  CAS  Google Scholar 

  17. Dobrev D, Graf EM, Wettwer E, Himmel HM, Hala O, Doerfel C, Christ T, Schüler S, Ravens U (2001) Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current (IK, ACh) in chronic human atrial fibrillation. Decrease in GIRK4 mRNA correlates with reduced muscarinic, receptor-mediated shortening of action potentials. Circulation 104:2551–2557. doi:10.1161/hc4601.099466

    Article  PubMed  CAS  Google Scholar 

  18. Dobrzynski H, Marples DD, Musa H, Yamanushi TT, Henderson Z, Takagishi Y, Honjo H, Kodama I, Boyett (2001) Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart. J Histochem Cytochem 49:1221–1234. doi:10.1177/002215540104901004

    Article  PubMed  CAS  Google Scholar 

  19. Domin J, Pages F, Volinia S, Rittenhouse SE, Zvelebil MJ, Stein RC, Waterfield MD (1997) Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem J 326:139–147

    PubMed  CAS  Google Scholar 

  20. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  21. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    PubMed  CAS  Google Scholar 

  22. Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582:675–693. doi:10.1113/jphysiol.2006.126714

    Article  PubMed  CAS  Google Scholar 

  23. Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A, Nattel S, Hohnloser SH, Ehrlich JR (2009) Changes in microRNA-1 expression and I(K1) up-regulation in human atrial fibrillation. Heart Rhythm 6:1802–1809. doi:10.1016/j.hrthm.2009.08.035

    Article  PubMed  Google Scholar 

  24. Hasin T, Elhanani O, Abassi Z, Hai T, Aronheim A (2011) Angiotensin II signaling up-regulates the immediate early transcription factor ATF3 in the left but not the right atrium. Basic Res Cardiol 106:175–187. doi:10.1007/s00395-010-0145-9

    Article  PubMed  CAS  Google Scholar 

  25. Heusch G (2010) Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 105:1–5. doi:10.1007/s00395-009-0074-7

    Article  PubMed  Google Scholar 

  26. Heusch G, Boengler K, Schulz R (2008) Cardioprotection nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIOAHA.108.805242

    Article  PubMed  Google Scholar 

  27. Himmel HM, Heringdorf DMZ, Graf E, Dobrev D, Kortner A, Schuler S, Jakobs KH, Ravens U (2000) Evidence for Edg-3 receptor-mediated activation of IK(ACh) by sphingosine-1-phosphate in human atrial cardiomyocytes. Mol Pharmacol 58:449–454. doi:10.1016/S1388-1981(02)00154-3

    PubMed  CAS  Google Scholar 

  28. Hommers LG, Klenk C, Dees C, Bünemann M (2010) G proteins in reverse mode receptor-mediated GTP release inhibits G protein and effector function. J Biol Chem 285:8227–8233. doi:10.1074/jbc.M109.015388

    Article  PubMed  CAS  Google Scholar 

  29. Khan S, Salloum F, Das A, Xi L, Vetrovec GW, Kukreja RC (2006) Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 41:256–264. doi:10.1016/j.yjmcc.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  30. Kurachi Y, Nakajima T, Sugimoto T (1986) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells—involvement of GTP-binding proteins. Pflügers Arch (Eur J Physiol) 407:264–274

    Article  CAS  Google Scholar 

  31. Leach RN, Desai JC, Orchard CH (2005) Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes. Cell Calcium 38:515–526. doi:10.1016/j.ceca.2005.07.006

    Article  PubMed  CAS  Google Scholar 

  32. Li JD, McLerie M, Lopatin AN (2004) Transgenic upregulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability. Am J Physiol Heart Circ Physiol 287:H2790–H2802. doi:10.1152/ajpheart.00114.2004

    Article  PubMed  CAS  Google Scholar 

  33. Littwitz C, Timpert M, Bender K, Pott L, Kienitz MC (2011) Autocrine signaling via A1 adenosine receptors causes downregulation of M2 receptors in adult rat atrial myocytes in vitro Pflügers. Arch (Eur J Physiol) 461:165–176. doi:1007/s00424-010-0897-y

    Article  CAS  Google Scholar 

  34. Lu YJ, Zhang Y, Shan HL, Pan ZW, Li XL, Li BX, Xu CQ, Zhang BS, Zhang FM, Dong DL, Song WQ, Qiao GF, Yang BF (2009) MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc Res 84:434–441. doi:10.1093/cvr/cvp232

    Article  PubMed  CAS  Google Scholar 

  35. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, Vogelstein B, He TC (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247. doi:10.1038/nprot.2007.135

    Article  PubMed  CAS  Google Scholar 

  36. Ma XJM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318. doi:10.1038/nrm2672

    Article  PubMed  Google Scholar 

  37. Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP (1997) Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Natl Acad Sci 94:6541–6546

    Article  PubMed  CAS  Google Scholar 

  38. Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2:220–223. doi:10.4161/cc.2.3.381

    Article  PubMed  CAS  Google Scholar 

  39. Miake J, Marban E, Nuss HB (2003) Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 111:1529–1536. doi:10.1172/JCI200317959

    PubMed  CAS  Google Scholar 

  40. Mubagwa K, Flameng W (2001) Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res 52:25–39. doi:10.1016/S0008-6363(01)00358-3

    Article  PubMed  CAS  Google Scholar 

  41. Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456. doi:10.1152/physrev.00014.2006

    Article  PubMed  CAS  Google Scholar 

  42. Noujaim SF, Pandit S, Vikstrom K, Berenfeld O, Cerrone M, Mironov S, Lopatin A, Jalife J (2007) Overexpression of the inward rectifier K+ current (IK1) accelerates and stabilizes rotors. Faseb J 21:A1157–A1158. doi:10.1113/jphysiol.2006.121475

    Google Scholar 

  43. Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114:208–221. doi:10.1016/j.pharmthera.2007.02.004

    Article  PubMed  CAS  Google Scholar 

  44. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST (c)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  PubMed  Google Scholar 

  45. Reichelt ME, Willems L, Molina JG, Sun CX, Noble JC, Ashton KJ, Schnermann J, Blackburn MR, Headrick JP (2005) Genetic deletion of the A1 adenosine receptor limits myocardial ischemic tolerance. Circ Res 96:363–367. doi:10.1161/01.RES.0000156075.00127.C3

    Article  PubMed  CAS  Google Scholar 

  46. Rinne A, Littwitz C, Kienitz MC, Gmerek A, Bösche LI, Pott L, Bender K (2006) Gene silencing in adult rat cardiac myocytes in vitro by adenovirus-mediated RNA interference. J Muscle Res Cell Motil 27:413–421. doi:10.1007/s10974-006-9087-0

    Article  PubMed  CAS  Google Scholar 

  47. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168. doi:10.1016/j.molcel.2006.03.029

    Article  PubMed  CAS  Google Scholar 

  48. Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950. doi:10.1161/01.RES.0000018627.89528.6F

    Article  PubMed  CAS  Google Scholar 

  49. Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79:2–10

    Article  PubMed  CAS  Google Scholar 

  50. Shryock JC, Ozeck MJ, Belardinelli L (1998) Inverse agonists and neutral antagonists of recombinant human A1 adenosine receptors stably expressed in Chinese hamster ovary cells. Mol Pharmacol 53:886–893

    PubMed  CAS  Google Scholar 

  51. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  52. Solenkova NV, Solodushko V, Cohen MV, Downey JM (2006) Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt. Am J Physiol Heart Circ Physiol 290:H441–H449. doi:10.1152/ajpheart.00589.2005

    Article  PubMed  CAS  Google Scholar 

  53. Suenari K, Chen YC, Kao YH, Cheng CC, Lin YK, Chen YJ, Chen SA (2011) Discrepant electrophysiological characteristics and calcium homeostasis of left anterior and posterior myocytes. Basic Res Cardiol 106:65–74. doi:10.1007/s00395-010-0132-1

    Article  PubMed  CAS  Google Scholar 

  54. Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, Dolphin AC (2004) PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 7:939–946. doi:10.1038/nn1300

    Article  PubMed  CAS  Google Scholar 

  55. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H–1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    PubMed  CAS  Google Scholar 

  56. Wagner C, Tillack D, Simonis G, Strasser RH, Weinbrenner C (2010) Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3beta, and apoptosis. Mol Cell Biochem 339:135–147. doi:10.1007/s11010-009-0377-x

    Article  PubMed  CAS  Google Scholar 

  57. Wellner-Kienitz MC, Bender K, Meyer T, Bünemann M, Pott L (2000) Overexpressed A1 adenosine receptors reduce activation of acetylcholine-sensitive K+ current by native muscarinic M2 receptors in rat atrial myocytes. Circ Res 86:643–648

    PubMed  CAS  Google Scholar 

  58. Yang BF, Lin HX, Xiao JN, Lu YJ, Luo XB, Li BX, Zhang Y, Xu CQ, Bai YL, Wang HZ, Chen GH, Wang ZG (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491. doi:10.1038/nm1569

    Article  PubMed  CAS  Google Scholar 

  59. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694. doi:10.1016/j.bbamcr.2008.01.024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Anke Galhoff, Bing Liu and Gabriele Reimus for expert technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Po212/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-C. Kienitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Treatment with LY 294002 did not abolish upregulation of IK1 in A1R-overexpressing cells. Ad-A1R-infected myocytes were incubated with 10 μM LY294002 for 48 h. Control data are the same as in the WTN experiments (compare Fig. 7C). Bar diagram shows the summarized data for IBa (1 mM) in the absence (n = 18) and presence of LY294002 (n = 16).

Supplementary material 1 (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienitz, MC., Littwitz, C., Bender, K. et al. Remodeling of inward rectifying K+ currents in rat atrial myocytes by overexpression of A1-adenosine receptors. Basic Res Cardiol 106, 953–966 (2011). https://doi.org/10.1007/s00395-011-0193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0193-9

Keywords

Navigation