Skip to main content

Advertisement

Log in

Activated NHE1 is required to induce early cardiac hypertrophy in mice

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The Na+/H+ exchanger isoform 1 (NHE1) has been implicated as being causal in cardiac hypertrophy and the protein level and activity are elevated in the diseased myocardium. However, it is unclear whether mere elevation of the protein is sufficient for cardiac pathology, or whether activation of the protein is required. In this study, we examined the comparative effects of elevation of wild type and activated NHE1. Two mouse transgenic models that expressed either a wild type NHE1 protein or an activated NHE1 protein were characterized. Expression of activated NHE1 caused significant increases in heart weight to body weight, apoptosis, cross-sectional area, interstitial fibrosis and decreased cardiac performance. Expression of wild type NHE1 caused a much milder pathology. When we examined 2 or 10-week-old mouse hearts, there was neither elevation of calcineurin levels nor increased phosphorylation of ERK or p38 in either NHE1 transgenic mouse line. Expression of activated NHE1 in intact mice caused an increased sensitivity to phenylephrine-induced hypertrophy. Our results show that expression of activated NHE1 promotes cardiac hypertrophy to a much greater degree than elevated levels of wild type NHE1 alone. In addition, expression of activated NHE1 promotes greater sensitivity to neurohormonal stimulation. The results suggest that activation of NHE1 is a key component that accentuates NHE1-induced myocardial pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis inducing factor

NHE:

Na+/H+ exchanger

HA:

Hemagglutinin

PARP:

Poly (ADP-ribose) polymerase

References

  1. Aker S, Snabaitis AK, Konietzka I, Van De Sand A, Bongler K, Avkiran M, Heusch G, Schulz R (2004) Inhibition of the Na+/H+ exchanger attenuates the deterioration of ventricular function during pacing-induced heart failure in rabbits. Cardiovasc Res 63:273–282. doi:10.1016/j.cardiores.2004.04.014

    Article  PubMed  CAS  Google Scholar 

  2. Avkiran M (2001) Protection of the ischaemic myocardium by Na+/H+ exchange inhibitors: potential mechanisms of action. Basic Res Cardiol 96:306–311. doi:10.1007/s003950170037

    Article  PubMed  CAS  Google Scholar 

  3. Avkiran M, Cook AR, Cuello F (2008) Targeting Na+/H+ exchanger regulation for cardiac protection: a RSKy approach? Curr Opin Pharmacol 8:133–140. doi:10.1016/j.coph.2007.12.007

    Article  PubMed  CAS  Google Scholar 

  4. Baczko I, Mraiche F, Light PE, Fliegel L (2008) Diastolic calcium is elevated in metabolic recovery of cardiomyocytes expressing elevated levels of the Na+/H+ exchanger. Can J Physiol Pharmacol 86:850–859. doi:10.1139/y08-092

    Article  PubMed  CAS  Google Scholar 

  5. Camprecios G, Navarro M, Soley M, Ramirez I (2009) Acute and chronic adrenergic stimulation of submandibular salivary glands. Effects on the endocrine function of epidermal growth factor in mice. Growth Factors 27:300–308. doi:10.1080/08977190903137736

    Article  PubMed  CAS  Google Scholar 

  6. Chen L, Chen CX, Gan XT, Beier N, Scholz W, Karmazyn M (2004) Inhibition and reversal of myocardial infarction-induced hypertrophy and heart failure by NHE-1 inhibition. Am J Physiol Heart Circ Physiol 286:H381–H387. doi:10.1152/ajpheart.00602.2003

    Article  PubMed  CAS  Google Scholar 

  7. Chen L, Gan XT, Haist JV, Feng Q, Lu X, Chakrabarti S, Karmazyn M (2001) Attenuation of compensatory right ventricular hypertrophy and heart failure following monocrotaline-induced pulmonary vascular injury by the Na+-H+ exchange inhibitor cariporide. J. Pharmacol Exp Ther 298:469–476

    PubMed  CAS  Google Scholar 

  8. Chen L, Zhang J, Gan TX, Chen-Izu Y, Hasday JD, Karmazyn M, Balke CW, Scharf SM (2008) Left ventricular dysfunction and associated cellular injury in rats exposed to chronic intermittent hypoxia. J Appl Physiol 104:218–223. doi:10.1152/japplphysiol.00301.2007

    Article  PubMed  CAS  Google Scholar 

  9. Chen P, Yuan Y, Wang S, Zhan L, Xu J (2006) Captopril, an Angiotensin-converting enzyme inhibitor, attenuates the severity of acute pancreatitis in rats by reducing expression of matrix metalloproteinase 9. Tohoku J Exp Med 209:99–107. doi:JST.JSTAGE/tjem/209.99

    Article  PubMed  CAS  Google Scholar 

  10. Cingolani HE, Ennis IL (2007) Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation 115:1090–1100. doi:10.1161/CIRCULATIONAHA.106.626929

    Article  PubMed  Google Scholar 

  11. Coccaro E, Karki P, Cojocaru C, Fliegel L (2009) Phenylephrine and sustained acidosis activate the neonatal rat cardiomyocyte Na+/H+ exchanger through phosphorylation of amino acids Ser770 and Ser771. Am J Physiol Heart Circ Physiol 297:H846–H858. doi:10.1152/ajpheart.01231.2008

    Article  PubMed  CAS  Google Scholar 

  12. Coccaro E, Mraiche F, Malo M, Vandertol-Vanier H, Bullis B, Robertson M, Fliegel L (2007) Expression and characterization of the Na(+)/H(+) exchanger in the mammalian myocardium. Mol Cell Biochem 302:145–155. doi:10.1007/s11010-007-9436-3

    Article  PubMed  CAS  Google Scholar 

  13. Cook AR, Bardswell SC, Pretheshan S, Dighe K, Kanaganayagam GS, Jabr RI, Merkle S, Marber MS, Engelhardt S, Avkiran M (2009) Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: a role for ER stress? J Mol Cell Cardiol 46:225–233. doi:10.1016/j.yjmcc.2008.10.013

    Article  PubMed  CAS  Google Scholar 

  14. Counillon L, Pouyssegur J (2000) The expanding family of eukaryotic Na+/H+ exchangers. J Biol Chem 275:1–4. doi:10.1074/jbc.275.1.1

    Article  PubMed  CAS  Google Scholar 

  15. Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J Jr, Chien KR, Lee KF (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465. doi:10.1038/nm0502-459

    Article  PubMed  CAS  Google Scholar 

  16. Dallabrida SM, Ismail NS, Pravda EA, Parodi EM, Dickie R, Durand EM, Lai J, Cassiola F, Rogers RA, Rupnick MA (2008) Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy. FASEB J 22:3010–3023. doi:10.1096/fj.07-100966

    Article  PubMed  CAS  Google Scholar 

  17. Dawn B, Xuan YT, Marian M, Flaherty MP, Murphree SS, Smith TL, Bolli R, Jones WK (2001) Cardiac-specific abrogation of NF- kappa B activation in mice by transdominant expression of a mutant I kappa B alpha. J Mol Cell Cardiol 33:161–173. doi:10.1006/jmcc.2000.1291

    Article  PubMed  CAS  Google Scholar 

  18. Dolinsky VW, Chan AY, Robillard Frayne I, Light PE, Des Rosiers C, Dyck JR (2009) Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 119:1643–1652. doi:10.1161/CIRCULATIONAHA.108.787440

    Article  PubMed  CAS  Google Scholar 

  19. Dyck JRB, Maddaford T, Pierce GN, Fliegel L (1995) Induction of expression of the sodium-hydrogen exchanger in rat myocardium. Cardiovasc Res 29:203–208. doi:10.1016/S0008-6363(96)88571-3

    PubMed  CAS  Google Scholar 

  20. Engelhardt S, Hein L, Keller U, Klambt K, Lohse MJ (2002) Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ Res 90:814–819. doi:10.1161/01.RES.0000014966.97486.C0

    Article  PubMed  CAS  Google Scholar 

  21. Ennis IL, Escudero EM, Console GM, Camihort G, Dumm CG, Seidler RW, Camilion de Hurtado MC, Cingolani HE (2003) Regression of isoproterenol-induced cardiac hypertrophy by Na+/H+ exchanger inhibition. Hypertension 41:1324–1329. doi:10.1161/01.HYP.0000071180.12012.6E

    Article  PubMed  CAS  Google Scholar 

  22. Fetscher C, Chen H, Schafers RF, Wambach G, Heusch G, Michel MC (2001) Modulation of noradrenaline-induced microvascular constriction by protein kinase inhibitors. Naunyn Schmiedebergs Arch Pharmacol 363:57–65. doi:10.1007/s002100000338

    Article  PubMed  CAS  Google Scholar 

  23. Fliegel L (2001) Regulation of myocardial Na+/H+ exchanger activity. Basic Res Cardiol 96:301–305. doi:10.1007/s003950170036

    Article  PubMed  CAS  Google Scholar 

  24. Fliegel L (2009) Regulation of the Na+/H+ exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets 13:55–68. doi:10.1517/14728220802600707

    Article  PubMed  CAS  Google Scholar 

  25. Fliegel L (2005) The Na+/H+ exchanger isoform 1. Int J Biochem Cell Biol 37:33–37. doi:10.1016/j.biocel.2004.02.006

    Article  PubMed  CAS  Google Scholar 

  26. Fujita T, Noda H, Ito Y, Isaka M, Sato Y, Ogata E (1989) Increased sympathoadrenomedullary activity and left ventricular hypertrophy in young patients with borderline hypertension. J Mol Cell Cardiol 21(Suppl 5):31–38

    Article  PubMed  Google Scholar 

  27. Gan XT, Chakrabarti S, Karmazyn M (1999) Modulation of Na+/H+ exchange isoform 1 mRNA expression in isolated rat hearts. Am J Physiol 277:H993–H998

    PubMed  CAS  Google Scholar 

  28. Gan XT, Gong XQ, Xue J, Haist JV, Bai D, Karmazyn M (2009) Sodium-hydrogen exchange inhibition attenuates glycoside-induced hypertrophy in rat ventricular myocytes. Cardiovasc Res 85:79–89. doi:10.1093/cvr/cvp283

    Article  Google Scholar 

  29. Garciarena CD, Caldiz CI, Portiansky EL, Chiappe de Cingolani GE, Ennis IL (2009) Chronic NHE-1 blockade induces an antiapoptotic effect in the hypertrophied heart. J Appl Physiol 106:1325–1331. doi:10.1152/japplphysiol.91300.2008

    Article  PubMed  CAS  Google Scholar 

  30. Goldspink PH, McKinney RD, Kimball VA, Geenen DL, Buttrick PM (2001) Angiotensin II induced cardiac hypertrophy in vivo is inhibited by cyclosporin A in adult rats. Mol Cell Biochem 226:83–88. doi:10.1023/A:1012789819926

    Article  PubMed  CAS  Google Scholar 

  31. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600. doi:10.1038/nrm1983

    Article  PubMed  CAS  Google Scholar 

  32. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, Haslett C, Simpson KJ, Sethi T (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA 103:5060–5065. doi:10.1073/pnas.0511167103

    Article  PubMed  CAS  Google Scholar 

  33. Iaccarino G, Dolber PC, Lefkowitz RJ, Koch WJ (1999) Bbeta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by beta- but not alpha1-adrenergic stimulation. Hypertension 33:396–401

    PubMed  CAS  Google Scholar 

  34. Imahashi K, Mraiche F, Steenbergen C, Murphy E, Fliegel L (2007) Overexpression of the Na+/H+ exchanger and ischemia-reperfusion injury in the myocardium. Am J Physiol Heart Circ Physiol 292:H2237–H2247. doi:10.1152/ajpheart.00855.2006

    Article  PubMed  CAS  Google Scholar 

  35. Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG, Karmazyn M (2008) NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Cardiovasc Res 77:416–424. doi:10.1093/cvr/cvm039

    Article  PubMed  CAS  Google Scholar 

  36. Javadov S, Rajapurohitam V, Kilic A, Hunter JC, Zeidan A, Said Faruq N, Escobales N, Karmazyn M (2010) Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol (in press). doi:10.1007/s00395-010-0122-3

  37. Jiang R, Zatta A, Kin H, Wang N, Reeves JG, Mykytenko J, Deneve J, Zhao ZQ, Guyton RA, Vinten-Johansen J (2007) PAR-2 activation at the time of reperfusion salvages myocardium via an ERK1/2 pathway in in vivo rat hearts. Am J Physiol Heart Circ Physiol 293:H2845–H2852. doi:10.1152/ajpheart.00209.2007

    Article  PubMed  CAS  Google Scholar 

  38. Karmazyn M, Liu Q, Gan XT, Brix BJ, Fliegel L (2003) Aldosterone increases NHE-1 expression and induces NHE-1-dependent hypertrophy in neonatal rat ventricular myocytes. Hypertension 42:1171–1176. doi:10.1161/01.HYP.0000102863.23854.0B

    Article  PubMed  CAS  Google Scholar 

  39. Karmazyn M, Sawyer M, Fliegel L (2005) The Na(+)/H(+) exchanger: a target for cardiac therapeutic intervention. Curr Drug Targets Cardiovasc Haematol Disord 5:323–335. doi:10.2174/1568006054553417

    Article  PubMed  CAS  Google Scholar 

  40. Karmazyn M, Sostaric JV, Gan XT (2001) The myocardial Na+/H+ exchanger: a potential therapeutic target for the prevention of myocardial ischaemic and reperfusion injury and attenuation of postinfarction heart failure. Drugs 61:375–389. doi:10.2165/00003495-200161030-00006

    Article  PubMed  CAS  Google Scholar 

  41. Kramer BK, Smith TW, Kelly RA (1991) Endothelin and increased contractility in adult rat ventricular myocytes. Role of intracellular alkalosis induced by activation of the protein kinase C-dependent Na+-H+ exchanger. Circ Res 68:269–279

    PubMed  CAS  Google Scholar 

  42. Leineweber K, Aker S, Beilfuss A, Rekasi H, Konietzka I, Martin C, Heusch G, Schulz R (2006) Inhibition of Na+/H+ -exchanger with sabiporide attenuates the downregulation and uncoupling of the myocardial beta-adrenoceptor system in failing rabbit hearts. Br J Pharmacol 148:137–146. doi:10.1038/sj.bjp.0706714

    Article  PubMed  CAS  Google Scholar 

  43. Liu F, Gesek FA (2001) Alpha(1)-Adrenergic receptors activate NHE1 and NHE3 through distinct signaling pathways in epithelial cells. Am J Physiol Renal Physiol 280:F415–F425

    PubMed  CAS  Google Scholar 

  44. Maass AH, Ikeda K, Oberdorf-Maass S, Maier SK, Leinwand LA (2004) Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T. Circulation 110:2102–2109. doi:10.1161/01.CIR.0000144460.84795.E3

    Article  PubMed  CAS  Google Scholar 

  45. Malo ME, Fliegel L (2006) Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol 84:1081–1095. doi:10.1139/Y06-065

    Article  PubMed  CAS  Google Scholar 

  46. Malo ME, Li L, Fliegel L (2007) Mitogen-activated protein kinase-dependent activation of the Na+/H+ exchanger is mediated through phosphorylation of amino acids Ser770 and Ser771. J Biol Chem 282:6292–6299. doi:10.1074/jbc.M611073200

    Article  PubMed  CAS  Google Scholar 

  47. Marano G, Vergari A, Catalano L, Gaudi S, Palazzesi S, Musumeci M, Stati T, Ferrari AU (2004) Na+/H+ exchange inhibition attenuates left ventricular remodeling and preserves systolic function in pressure-overloaded hearts. Br J Pharmacol 141:526–532. doi:10.1038/sj.bjp.0705631

    Article  PubMed  CAS  Google Scholar 

  48. Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, Glembotski CC (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res 98:1186–1193. doi:10.1161/01.RES.0000220643.65941.8d

    Article  PubMed  CAS  Google Scholar 

  49. Matsui Y, Jia N, Okamoto H, Kon S, Onozuka H, Akino M, Liu L, Morimoto J, Rittling SR, Denhardt D, Kitabatake A, Uede T (2004) Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy. Hypertension 43:1195–1201. doi:10.1161/01.HYP.0000128621.68160.dd

    Article  PubMed  CAS  Google Scholar 

  50. Meima ME, Mackley JR, Barber DL (2007) Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1. Curr Opin Nephrol Hypertension 16:365–372. doi:10.1097/MNH.0b013e3281bd888d

    Article  CAS  Google Scholar 

  51. Moor A, Gan XT, Karmazyn M, Fliegel L (2001) Activation of Na+/H+ exchanger-directed protein kinases in the ischemic and ischemic-reperfused rat myocardium. J Biol Chem 27:16113–16122. doi:10.1074/jbc.M100519200

    Article  Google Scholar 

  52. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103:891–899. doi:10.1161/CIRCRESAHA.108.175141

    Article  PubMed  CAS  Google Scholar 

  53. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–1670. doi:10.1096/fj.05-5560com

    Article  PubMed  CAS  Google Scholar 

  54. Niizeki T, Takeishi Y, Kitahara T, Arimoto T, Ishino M, Bilim O, Suzuki S, Sasaki T, Nakajima O, Walsh RA, Goto K, Kubota I (2008) Diacylglycerol kinase-epsilon restores cardiac dysfunction under chronic pressure overload: a new specific regulator of Galpha(q) signaling cascade. Am J Physiol Heart Circ Physiol 295:H245–H255. doi:10.1152/ajpheart.00066.2008

    Article  PubMed  CAS  Google Scholar 

  55. Regula KM, Kirshenbaum LA (2005) Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol 38:3–13. doi:10.1016/j.yjmcc.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  56. Schafer M, Schafer C, Michael Piper H, Schluter KD (2002) Hypertrophic responsiveness of cardiomyocytes to alpha- or beta-adrenoceptor stimulation requires sodium-proton-exchanger-1 (NHE-1) activation but not cellular alkalization. Eur J Heart Fail 4:249–254. doi:10.1016/S1388-9842(02)00016-8

    Article  PubMed  CAS  Google Scholar 

  57. Shannon R, Chaudhry M (2006) Effect of alpha1-adrenergic receptors in cardiac pathophysiology. Am Heart J 152:842–850. doi:10.1016/j.ahj.2006.05.017

    Article  PubMed  CAS  Google Scholar 

  58. Vinge LE, von Lueder TG, Aasum E, Qvigstad E, Gravning JA, How OJ, Edvardsen T, Bjornerheim R, Ahmed MS, Mikkelsen BW, Oie E, Attramadal T, Skomedal T, Smiseth OA, Koch WJ, Larsen TS, Attramadal H (2008) Cardiac-restricted expression of the carboxyl-terminal fragment of GRK3 Uncovers Distinct Functions of GRK3 in regulation of cardiac contractility and growth: GRK3 controls cardiac alpha1-adrenergic receptor responsiveness. J Biol Chem 283:10601–10610. doi:10.1074/jbc.M708912200

    Article  PubMed  CAS  Google Scholar 

  59. Wang Y, Luo J, Chen X, Chen H, Cramer SW, Sun D (2008) Gene inactivation of Na+/H+ exchanger isoform 1 attenuates apoptosis and mitochondrial damage following transient focal cerebral ischemia. Eur J Neurosci 28:51–61. doi:10.1111/j.1460-9568.2008.06304.x

    Article  PubMed  Google Scholar 

  60. Wu X, Chang B, Blair NS, Sargent M, York AJ, Robbins J, Shull GE, Molkentin JD (2009) Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest 119:976–985. doi:10.1172/JCI36693

    PubMed  CAS  Google Scholar 

  61. Xia Y, Rajapurohitam V, Cook MA, Karmazyn M (2004) Inhibition of phenylephrine induced hypertrophy in rat neonatal cardiomyocytes by the mitochondrial KATP channel opener diazoxide. J Mol Cell Cardiol 37:1063–1067. doi:10.1016/j.yjmcc.2004.07.002

    Article  PubMed  CAS  Google Scholar 

  62. Yokoyama H, Gunasegaram S, Harding SE, Avkiran M (2000) Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. J Am Coll Cardiol 36:534–540. doi:10.1016/S0735-1097(00)00730-0

    Article  PubMed  CAS  Google Scholar 

  63. Yokoyama H, Yasutake M, Avkiran M (1998) Alpha1-adrenergic stimulation of sarcolemmal Na+-H+ exchanger activity in rat ventricular myocytes: evidence for selective mediation by the alpha1A-adrenoceptor subtype. Circ Res 82:1078–1085

    PubMed  CAS  Google Scholar 

  64. Yoshida H, Karmazyn M (2000) Na(+)/H(+) exchange inhibition attenuates hypertrophy and heart failure in 1-wk postinfarction rat myocardium. A J Physiol 278:H300–H304

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research #MOP-97816. Larry Fliegel is supported by an Alberta Heritage Foundation for Medical Research Senior Scientist award and Fatima Mraiche is supported by CIHR and AHFMR. Morris Karmazyn is supported by a Canada Research Chair in Experimental Cardiology.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Fliegel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2011_161_MOESM1_ESM.pdf

Analysis of signaling pathways in control, N-line and K-line mouse hearts. A, Upper panel, representative western blot of relative amounts of phosphorylated and total pro-hypertrophic kinases, ERK, p38, p38(α), JNK and RSK. Lanes 1-3 controls, lanes 4-6 N-line and lanes 7-9 K-line. Lower panel, quantification of a series of experiments measuring the ratio of phosphorylated to total protein for phospho-ERK/ERK, phospho-p38/p38(α), phospho-JNK/JNK and phospho-RSK/ RSK. Results were calculated as a % of control (for each group) ± %SEM (n=3 hearts/group of 12 week old hearts). B, as in Fig. 1A for the indicated protein kinases except done with hearts from two week old mice. Lanes 1-2 controls, lanes 3-5 N-line and lanes 6-8 K-line. Results were calculated as a % of control (for each group) ± %SEM (n=5-6 hearts/group). C, Upper panel, representative western blot of GSK-3β and GAPDH in the cytosolic fraction from heart lysates. Middle panel, representative western blot of GSK-3β and MnSOD in the mitochondrial fraction of heart lysates. Lower panel, GSK-3β to GAPDH or MnSOD ratio in the cytosolic or mitochondrial fractions. Results were calculated as a % of control (for each group) ± SEM (n=5-6 hearts/group). D, Calcineurin phosphatase activity in control, N-line and K-line mouse hearts. Results are expressed as a % of controls ± %SEM (n=5 hearts/group) (PDF 1243 kb)

395_2011_161_MOESM2_ESM.pdf

Analysis of apoptosis mediated through the caspase dependent pathway in control, N-line and K-line mice. A, Caspase-3 activity in the cytosolic fraction of heart lysates. Results are expressed as a % of control ± % SEM (n=4 hearts/group). B, Upper Panel, immunoblot analysis of total Cyt c protein expression in the cytosolic (normalized to GAPDH) and mitochondrial (normalized to MnSOD) fraction of heart lysates. Lanes 1-3 represent control, lanes 4-6 represent N-line and lanes 7-9 represent K-line. Lower panel, quantification of a series of experiments quantified and normalized for each group and calculated as a % of control ± % SEM (n=6 hearts/group). C, Upper panel, immunoblot analysis of the cleaved PARP (85kDa) in the cytosolic fraction of heart lysates, normalized to actin. Lanes 1-3 represent controls, Lanes 4-6 represent N-line and lane 7-9 represents K-line. Lower panel, quantification of a series of experiments quantified for the 89kDa cleaved PARP band. Results are expressed as a % of control ± % SEM (n=5-6 hearts/group) (PDF 56 kb)

395_2011_161_MOESM3_ESM.pdf

Analysis of indices of cardiac hypertrophy in control, N-line and K-line mice stimulated with phenylephrine. A, Quantitative analysis of heart cross sections stained with H&E and expressed as % of control (individual group stimulated with vehicle PBS) ± % SEM (n=4-6 hearts/group). B, Quantitative analysis of interstitial fibrosis of cross sections of hearts stained with picro-sirius red. The maximum fibrosis observed for any section was calculated as the area occupied by red stained connective tissue divided by the areas occupied by connective tissue plus cardiac myocytes. Accumulated interstitial fibrosis area per group, expressed as % of control ± % SEM (n=4 hearts/group) (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mraiche, F., Oka, T., Gan, X.T. et al. Activated NHE1 is required to induce early cardiac hypertrophy in mice. Basic Res Cardiol 106, 603–616 (2011). https://doi.org/10.1007/s00395-011-0161-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0161-4

Keywords

Navigation