Skip to main content


Log in

Expression of mitochondrial fusion–fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript


Studies on the role of mitochondrial fission/fusion (MFF) proteins in the heart have been initiated recently due to their biological significance in cell metabolism. We hypothesized that the expression of MFF proteins is affected by post-infarction remodeling and in vitro cardiomyocyte hypertrophy, and serves as a target for the Na+/H+ exchanger 1 (NHE-1) inhibition. Post-infarction remodeling was induced in Sprague–Dawley rats by coronary artery ligation (CAL) while in vitro hypertrophy was induced in cardiomyocytes by phenylephrine (PE). Mitochondrial fission (Fis1, DRP1) and fusion (Mfn2, OPA1) proteins were analyzed in heart homogenates and cell lysates by Western blotting. Our results showed that 12 and 18 weeks after CAL, Fis1 increased by 80% (P < 0.01) and 31% (P < 0.05), and Mfn2 was reduced by 17% (P < 0.05) and 22% (P < 0.05), respectively. OPA1 was not changed at 12 weeks, although its expression decreased by 18% (P < 0.05) with 18 weeks of ligation. MFF proteins were also affected by PE-induced hypertrophy that was dependent on mitochondrial permeability transition pore opening and oxidative stress. The NHE-1-specific inhibitor EMD-87580 (EMD) attenuated changes in the expression of MFF proteins in both the models of hypertrophy. The effect of EMD was likely mediated, at least in part, through its direct action on mitochondria since Percoll-purified mitochondria and mitoplasts have been shown to contain NHE-1. Our study provides the first evidence linking cardiac hypertrophy with MFF proteins expression that was affected by NHE-1 inhibition, thus suggesting that MFF proteins might be a target for pharmacotherapy with anti-hypertrophic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others



Atrial natriuretic peptide


Adenine nucleotide translocase


Coronary artery ligation


Cytochrome c oxidase


Cyclophilin D


Dynamin-related protein 1




Mitochondrial fission 1 protein


Monocarboxylate cotransporter 1


Mitochondrial fission and fusion

Mfn1 and Mfn2:

Mitofusins 1 and 2


Mitochondrial permeability transition


Na+/H+ exchanger 1


Optic atrophy type 1 protein




ROS-induced ROS


Reactive oxygen species


Ruthenium red


α-Skeletal actin


Sanglifehrin A


Spontaneously hypertensive rats


Voltage dependent anion channel


  1. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280:35742–35750

    Article  CAS  PubMed  Google Scholar 

  2. Baartscheer A (2006) Chronic inhibition of Na(+)/H(+)-exchanger in the heart. Curr Vasc Pharmacol 4:23–29

    Article  CAS  PubMed  Google Scholar 

  3. Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104:181–188

    Article  CAS  PubMed  Google Scholar 

  4. Beraud N, Pelloux S, Usson Y, Kuznetsov AV, Ronot X, Tourneur Y, Saks V (2009) Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr 41:195–214

    Article  CAS  PubMed  Google Scholar 

  5. Bkaily G, Nader M, Avedanian L, Jacques D, Perrault C, Abdel-Samad D, D’Orleans-Juste P, Gobeil F, Hazzouri KM (2004) Immunofluorescence revealed the presence of NHE-1 in the nuclear membranes of rat cardiomyocytes and isolated nuclei of human, rabbit, and rat aortic and liver tissues. Can J Physiol Pharmacol 82:805–811

    Article  CAS  PubMed  Google Scholar 

  6. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147

    Article  CAS  PubMed  Google Scholar 

  7. Cartoni R, Leger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Deriaz O, Zorzano A, Gobelet C, Kralli A, Russell AP (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358

    Article  CAS  PubMed  Google Scholar 

  8. Chen L, Chen CX, Gan XT, Beier N, Scholz W, Karmazyn M (2004) Inhibition and reversal of myocardial infarction-induced hypertrophy and heart failure by NHE-1 inhibition. Am J Physiol Heart Circ Physiol 286:H381–H387

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84:91–99

    Article  CAS  PubMed  Google Scholar 

  10. Cingolani HE, Ennis IL (2007) Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation 115:1090–1100

    Article  PubMed  Google Scholar 

  11. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101:15927–15932

    Article  CAS  PubMed  Google Scholar 

  12. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    Article  CAS  PubMed  Google Scholar 

  13. Dorn GW 2nd (2009) Novel pharmacotherapies to abrogate postinfarction ventricular remodeling. Nat Rev Cardiol 6:283–291

    Article  CAS  PubMed  Google Scholar 

  14. Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  15. Fang L, Moore XL, Gao XM, Dart AM, Lim YL, Du XJ (2007) Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sci 80:2154–2160

    Article  CAS  PubMed  Google Scholar 

  16. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  17. Garciarena CD, Caldiz CI, Correa MV, Schinella GR, Mosca SM, Chiappe de Cingolani GE, Cingolani HE, Ennis IL (2008) Na+/H+ exchanger-1 inhibitors decrease myocardial superoxide production via direct mitochondrial action. J Appl Physiol 105:1706–1713

    Article  CAS  PubMed  Google Scholar 

  18. Goffart S, von Kleist-Retzow JC, Wiesner RJ (2004) Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res 64:198–207

    Article  CAS  PubMed  Google Scholar 

  19. Greenawalt JW (1979) Survey and update of outer and inner mitochondrial membrane separation. Methods Enzymol 55:88–98

    Article  CAS  PubMed  Google Scholar 

  20. Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415

    Article  CAS  PubMed  Google Scholar 

  21. Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202

    Article  CAS  PubMed  Google Scholar 

  22. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586

    Article  CAS  PubMed  Google Scholar 

  23. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154

    Article  PubMed  Google Scholar 

  24. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919

    Article  PubMed  Google Scholar 

  25. Hom J, Sheu SS (2009) Morphological dynamics of mitochondria––a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46:811–820

    Article  CAS  PubMed  Google Scholar 

  26. Ishihara N, Jofuku A, Eura Y, Mihara K (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 301:891–898

    Article  CAS  PubMed  Google Scholar 

  27. Ito N, Kagaya Y, Weinberg EO, Barry WH, Lorell BH (1997) Endothelin and angiotensin II stimulation of Na+-H+ exchange is impaired in cardiac hypertrophy. J Clin Invest 99:125–135

    Article  CAS  PubMed  Google Scholar 

  28. Javadov S, Huang C, Kirshenbaum L, Karmazyn M (2005) NHE-1 inhibition improves impaired mitochondrial permeability transition and respiratory function during postinfarction remodelling in the rat. J Mol Cell Cardiol 38:135–143

    Article  CAS  PubMed  Google Scholar 

  29. Javadov S, Baetz D, Rajapurohitam V, Zeidan A, Kirshenbaum LA, Karmazyn M (2006) Antihypertrophic effect of Na+/H+ exchanger isoform 1 inhibition is mediated by reduced mitogen-activated protein kinase activation secondary to improved mitochondrial integrity and decreased generation of mitochondrial-derived reactive oxygen species. J Pharmacol Exp Ther 317:1036–1043

    Article  CAS  PubMed  Google Scholar 

  30. Javadov S, Purdham DM, Zeidan A, Karmazyn M (2006) NHE-1 inhibition improves cardiac mitochondrial function through regulation of mitochondrial biogenesis during postinfarction remodeling. Am J Physiol Heart Circ Physiol 291:H1722–H1730

    Article  CAS  PubMed  Google Scholar 

  31. Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG, Karmazyn M (2008) NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Cardiovasc Res 77:416–424

    Article  CAS  PubMed  Google Scholar 

  32. Javadov S, Rajapurohitam V, Kilic A, Zeidan A, Choi A, Karmazyn M (2009) Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol 46:998–1007

    Article  CAS  PubMed  Google Scholar 

  33. Javadov S, Karmazyn M, Escobales N (2009) Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 330:670–678

    Article  CAS  PubMed  Google Scholar 

  34. Karmazyn M, Kilic A, Javadov S (2008) The role of NHE-1 in myocardial hypertrophy and remodelling. J Mol Cell Cardiol 44:647–653

    Article  CAS  PubMed  Google Scholar 

  35. Kilic A, Javadov S, Karmazyn M (2009) Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 46:360–369

    Article  CAS  PubMed  Google Scholar 

  36. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    Article  CAS  PubMed  Google Scholar 

  37. Mattiazzi A, Perez NG, Vila-Petroff MG, Alvarez B, Camilion de Hurtado MC, Cingolani HE (1997) Dissociation between positive inotropic and alkalinizing effects of angiotensin II in feline myocardium. Am J Physiol 272:H1131–H1136

    CAS  PubMed  Google Scholar 

  38. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  PubMed  Google Scholar 

  39. Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem 273:21054–21060

    Article  CAS  PubMed  Google Scholar 

  40. Numata M, Petrecca K, Lake N, Orlowski J (1998) Identification of a mitochondrial Na+/H+ exchanger. J Biol Chem 273:6951–6959

    Article  CAS  PubMed  Google Scholar 

  41. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    Article  CAS  PubMed  Google Scholar 

  42. Parone PA, James DI, Da Cruz S, Mattenberger Y, Donze O, Barja F, Martinou JC (2006) Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 26:7397–7408

    Article  CAS  PubMed  Google Scholar 

  43. Parra V, Eisner V, Chiong M, Criollo A, Moraga F, Garcia A, Hartel S, Jaimovich E, Zorzano A, Hidalgo C, Lavandero S (2008) Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77:387–397

    Article  CAS  PubMed  Google Scholar 

  44. Rojo M, Legros F, Chateau D, Lombes A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674

    CAS  PubMed  Google Scholar 

  45. Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G, Hoppe UC (2010) Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. J Clin Invest 120:1441–1453

    Article  CAS  PubMed  Google Scholar 

  46. Tian R, Nascimben L, Ingwall JS, Lorell BH (1997) Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 96:1313–1319

    CAS  PubMed  Google Scholar 

  47. Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497

    Article  CAS  PubMed  Google Scholar 

  48. Yokoyama H, Yasutake M, Avkiran M (1998) Alpha1-adrenergic stimulation of sarcolemmal Na+-H+ exchanger activity in rat ventricular myocytes: evidence for selective mediation by the alpha1A-adrenoceptor subtype. Circ Res 82:1078–1085

    CAS  PubMed  Google Scholar 

  49. Yu T, Fox RJ, Burwell LS, Yoon Y (2005) Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J Cell Sci 118:4141–4151

    Article  CAS  PubMed  Google Scholar 

  50. Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351

    Article  CAS  PubMed  Google Scholar 

  51. Zorzano A, Hernandez-Alvarez MI, Palacin M, Mingrone G (2010) Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim Biophys Acta 1797:1028–1033

    Google Scholar 

Download references


Dr. M. Karmazyn holds a Tier 1 Canada Research Chair in Experimental Cardiology. This study was supported by a grant from the Institute of Cardiovascular and Respiratory Health of the Canadian Institutes of Health Research to Dr. M. Karmazyn and in part, by the School of Medicine, University of Puerto Rico to Dr. S. Javadov. Dr. A. Kilić was supported by a Fellowship from the Heart and Stroke Foundation of Canada and the Tailored Advanced Collaborative Training in Cardiovascular Science (TACTICS) program.

Conflict of interest

None declared.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sabzali Javadov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javadov, S., Rajapurohitam, V., Kilić, A. et al. Expression of mitochondrial fusion–fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 106, 99–109 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: