Skip to main content

Caffeine-induced Ca2+ signaling as an index of cardiac progenitor cells differentiation

Abstract

Cardiac progenitor cells (CPCs), migrating from heart tissue, in culture aggregate to form cardiospheres (CSs) in which replication and cardiogenic differentiation occur. However, the frequency of functional differentiation in CSs and the role of cell clustering in supporting it remain to be established. The aim of our study is to quantify differentiation of a muscle-type Ca2+ release mechanism in CS-derived cells, correlate it with cardiac differentiation markers and test its dependency on CS formation. CPCs migrating from murine cardiac explants were studied prior and after CSs formation (Pre-CS and Post-CS). Inducibility of RyR- and IP3-R-mediated Ca2+ transients in individual cells was tested by exposure to caffeine and ATP, respectively; expression of cardiac and non-cardiac lineage markers was assessed. Caffeine responsiveness was negligible in Pre-CS cells and increased by 7.5 fold in Post-CS cells (3.6 vs. 26.9%; p < 0.05), and was closely correlated with activation of the cardiac TnI gene promoter. ATP-induced responses, frequent in Pre-CS (86%), were slightly increased in Post-CS cells (94%; p < 0.05). Expression of cardiac-specific Ca2+-handling proteins (Cav1.2, NCX1, RyR2, SERCA2a) was either limited to the Post-CS stage, or markedly enhanced. CS beating was infrequent, but its pharmacology was compatible with cardiac excitation–contraction coupling. Expression of non-cardiac lineage was low in general, and similar between Pre- and Post-CS cells. Culture conditions inhibiting CSs formation prevented the increase in caffeine responders. In conclusion, clustering in CSs leads to the induction of a muscle-specific functional response in about 30% of CPCs; this is accompanied by development of a cardiac-specific expression pattern.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdel-Latif A, Zuba-Surma EK, Case J et al (2008) TGF-beta1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells. Basic Res Cardiol 103:514–524

    Article  CAS  PubMed  Google Scholar 

  2. Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27:1571–1581

    Article  PubMed  Google Scholar 

  3. Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells—a paradigm shift in cardiac biology. Circulation 113:1451–1463

    Article  PubMed  Google Scholar 

  4. Barile L, Chimenti I, Gaetani R et al (2007) Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med 1(4 Suppl):S9–S14

    Article  Google Scholar 

  5. Bartosh TJ, Wang ZH, Rosales AA, Dimitrijevich SD, Roque RS (2008) 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem 105:612–623

    Article  CAS  PubMed  Google Scholar 

  6. Bassani JW, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476:279–293

    CAS  PubMed  Google Scholar 

  7. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  8. Benitah JP, Perrier E, Gomez AM, Vassort G (2001) Effects of aldosterone on transient outward K+ current density in rat ventricular myocytes. J Physiol 537:151–160

    Article  CAS  PubMed  Google Scholar 

  9. Davis DR, Zhang Y, Smith RR et al (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One 4:e7195

    Article  PubMed  Google Scholar 

  10. Delcarpio JB, Claycomb WC, Moses RL (1989) Ultrastructural morphometric analysis of cultured neonatal and adult rat ventricular cardiac muscle cells. Am J Anat 186:335–345

    Article  CAS  PubMed  Google Scholar 

  11. Di Lisi R, Millino C, Calabria E, Altruda F, Schiaffino S, Ausoni S (1998) Combinatorial cis-acting elements control tissue-specific activation of the cardiac troponin I gene in vitro and in vivo. J Biol Chem 273:25371–25380

    Article  PubMed  Google Scholar 

  12. Gallo P, Grimaldi S, Latronico MVG et al (2008) A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Ther 15:161–170

    Article  CAS  PubMed  Google Scholar 

  13. Genovese JA, Spadaccio C, Langer J, Habe J, Jackson J, Patel AN (2008) Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts. Biochem Biophys Res Commun 370:450–455

    Article  CAS  PubMed  Google Scholar 

  14. Halkos ME, Zhao ZQ, Kerendi F et al (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103:525–536

    Article  PubMed  Google Scholar 

  15. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:239–243

    Article  CAS  PubMed  Google Scholar 

  16. Janowski E, Cleemann L, Sasse P, Morad M (2006) Diversity of Ca2+signaling in developing cardiac cells. Ann NY Acad Sci 1080:154–164

    Article  CAS  PubMed  Google Scholar 

  17. Kajstura J, Urbanek K, Rota M et al (2008) Cardiac stem cells and myocardial disease. J Mol Cell Cardiol 45:505–513

    Article  CAS  PubMed  Google Scholar 

  18. Kapur N, Banach K (2007) Inositol-1, 4, 5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes. J Physiol 581:1113–1127

    Article  CAS  PubMed  Google Scholar 

  19. Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  CAS  PubMed  Google Scholar 

  20. Lipp P, Laine M, Tovey SC et al (2000) Functional InsP(3) receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Fu JD, Siu CW, Li RA (2007) Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells 25:3038–3044

    Article  CAS  PubMed  Google Scholar 

  22. Liu WR, Yasui K, Opthof T et al (2002) Developmental changes of Ca2+ handling in mouse ventricular cells from early embryo to adulthood. Life Sci 71:1279–1292

    Article  CAS  PubMed  Google Scholar 

  23. Martin CM, Meeson AP, Robertson SM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275

    Article  CAS  PubMed  Google Scholar 

  24. Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  CAS  PubMed  Google Scholar 

  25. Mironneau J, Coussin F, Jeyakumar LH, Fleischer S, Mironneau C, Macrez N (2001) Contribution of ryanodine receptor subtype 3 to Ca2+ responses in Ca2+-overloaded cultured rat portal vein myocytes. J Biol Chem 276:11257–11264

    Article  CAS  PubMed  Google Scholar 

  26. Muldoon LL, Enslen H, Rodland KD, Magun BE (1991) Stimulation of Ca2+ influx by endothelin-1 is subject to negative feedback by elevated intracellular Ca2+. Am J Physiol 260:C1273–C1281

    CAS  PubMed  Google Scholar 

  27. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  CAS  PubMed  Google Scholar 

  28. Salnikov V, Lukyanenko YO, Lederer WJ, Lukyanenko V (2009) Distribution of ryanodine receptors in rat ventricular myocytes. J Muscle Res Cell Motil 30:161–170

    Article  CAS  PubMed  Google Scholar 

  29. Satin J, Itzhaki I, Rapoport S et al (2008) Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 26:1961–1972

    Article  CAS  PubMed  Google Scholar 

  30. Seki S, Nagashima M, Yamada Y et al (2003) Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes. Cardiovasc Res 58:535–548

    Article  CAS  PubMed  Google Scholar 

  31. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  32. Sreejit P, Kumar S, Verma RS (2008) An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell Dev Biol Anim 44:45–50

    Article  CAS  PubMed  Google Scholar 

  33. Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 39:173–185

    Article  CAS  PubMed  Google Scholar 

  34. Vassort G (2001) Adenosine 5′-triphosphate: a P2-Purinergic agonist in the myocardium. Physiol Rev 81:767–806

    CAS  PubMed  Google Scholar 

  35. Vermassen E, Parys JB, Mauger JP (2004) Subcellular distribution of the inositol 1, 4, 5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell 96:3–17

    Article  CAS  PubMed  Google Scholar 

  36. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385

    Article  CAS  PubMed  Google Scholar 

  37. Zima AV, Blatter LA (2004) Inositol-1, 4, 5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation–contraction coupling and arrhythmias. J Physiol 555:607–615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to Prof. Gianluigi Condorelli and Dr. Pasquale Gallo for providing the TNNI3-LVV virus, Stemgen (Prof. A. Vescovi and Dr. G. Lamorte) for the technical supports microscopy imaging acquisition, Drs. Roberto Gaetani and Isotta Chimenti for their help in the cell culture. We thank Drs Schiaffino S. and Ausoni S., Università di Padova for kindly providing transgenic mice. This work was supported by grants from foundation Provincia Italiana. Congregazione Figli dell’Immacolata Concezione; grant CE n LSHB-CT2004- 502988 SC&CR; Cariplo Foundation grant 2007-5639 (A.Z.). Cenci-Bolognetti Foundation, Pasteur Institute, University of Rome”La Sapienza” (A.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Zaza.

Additional information

C. Altomare and L. Barile contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1317 kb)

Movie 1. spontaneous beating CS 5 days after plating on fibronectin (MPEG 1850 kb)

Movie 3. recording of twitch experiment on limited region of beating CS; superfused test drugs are listed as subtitles (MPEG 2604 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Altomare, C., Barile, L., Marangoni, S. et al. Caffeine-induced Ca2+ signaling as an index of cardiac progenitor cells differentiation. Basic Res Cardiol 105, 737–749 (2010). https://doi.org/10.1007/s00395-010-0111-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0111-6

Keywords

  • Ca2+ transients
  • Cardiac differentiation
  • Progenitor cells
  • Functional markers