Skip to main content
Log in

Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-α and IL-1β. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-α and IL-1β in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Archer LT, Black MR (1975) Myocardial failure with altered response to adrenaline in endotoxin shock. Br J Pharmacol 54:145–155

    PubMed  CAS  Google Scholar 

  2. Avanzi GC, Brizzi MF, Giannotti J, Ciarletta A, Yang YC, Pegoraro L, Clark SC (1990) M-07e human leukemic factor-dependent cell line provides a rapid and sensitive bioassay for the human cytokines GM-CSF and IL-3. J Cell Physiol 145:458–464

    Article  PubMed  CAS  Google Scholar 

  3. Baker JE, Su J, Hsu A, Shi Y, Zhao M, Strande JL, Fu X, Xu H, Eis A, Komorowski R, Jensen ES, Tweddell JS, Rafiee P, Gross GJ (2008) Human thrombopoietin reduces myocardial infarct size, apoptosis, and stunning following ischaemia/reperfusion in rats. Cardiovasc Res 77:44–53

    Article  PubMed  CAS  Google Scholar 

  4. Bernardin G, Strosberg AD, Bernard A, Mattei M, Marullo S (1998) Beta-adrenergic receptor-dependent and -independent stimulation of adenylate cyclase is impaired during severe sepsis in humans. Intensive Care Med 24:1315–1322

    Article  PubMed  CAS  Google Scholar 

  5. Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman AM, Mann DL (2001) Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103:1044–1047

    PubMed  CAS  Google Scholar 

  6. Brizzi MF, Battaglia E, Rosso A, Strippoli P, Montrucchio G, Camussi G, Pegoraro L (1997) Regulation of polymorphonuclear cell activation by thrombopoietin. J Clin Invest 99:1576–1584

    Article  PubMed  CAS  Google Scholar 

  7. Brizzi MF, Battaglia E, Montrucchio G, Dentelli P, Del Sorbo L, Garbarino G, Pegoraro L, Camussi G (1999) Thrombopoietin stimulates endothelial cell motility and neoangiogenesis by a platelet-activating factor-dependent mechanism. Circ Res 84:785–796

    PubMed  CAS  Google Scholar 

  8. Cerutti A, Custodi P, Duranti M, Noris P, Balduini CL (1997) Thrombopoietin levels in patients with primary and reactive thrombocytosis. Br J Haematol 99:281–284

    Article  PubMed  CAS  Google Scholar 

  9. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89

    Article  PubMed  CAS  Google Scholar 

  10. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133–3140

    Article  PubMed  CAS  Google Scholar 

  11. Colarizi P, Fiorucci P, Caradonna A, Ficuccilli F, Mancuso M, Papoff P (1999) Circulating thrombopoietin levels in neonates with infection. Acta Paediatr 88:332–337

    Article  PubMed  CAS  Google Scholar 

  12. Dorge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNF-alpha in contractile dysfunction. J Mol Cell Cardiol 34:51–62

    Article  PubMed  CAS  Google Scholar 

  13. Ebihara Y, Karmazyn M (1996) Inhibition of beta- but not alpha 1-mediated adrenergic responses in isolated hearts and cardiomyocytes by nitric oxide and 8-bromo cyclic GMP. Cardiovasc Res 32:622–629

    PubMed  CAS  Google Scholar 

  14. Ehrenreich H, Hasselblatt M, Knerlich F, von Ahsen N, Jacob S, Sperling S, Woldt H, Vehmeyer K, Nave KA, Siren AL (2005) A hematopoietic growth factor, thrombopoietin, has a proapoptotic role in the brain. Proc Natl Acad Sci 102:862–867

    Article  PubMed  CAS  Google Scholar 

  15. Emmons RV, Reid DM, Cohen RL, Meng G, Young NS, Dunbar CE, Shulman NR (1996) Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction. Blood 87:4068–4071

    PubMed  CAS  Google Scholar 

  16. Gallo MP, Levi R, Ramella R, Brero A, Boero O, Tota B, Alloatti G (2007) Endothelium-derived nitric oxide mediates the antiadrenergic effect of human vasostatin-1 in rat ventricular myocardium. Am J Physiol Heart Circ Physiol 292:H2906–H2912

    Article  PubMed  CAS  Google Scholar 

  17. Gebhard C, Stampfli SF, Gebhard CE, Akhmedov A, Breitenstein A, Camici GG, Holy EW, Luscher TF, Tanner FC (2009) Guggulsterone, an anti-inflammatory phytosterol, inhibits tissue factor and arterial thrombosis. Basic Res Cardiol 104:285–294

    Article  PubMed  CAS  Google Scholar 

  18. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci 86:6753–6757

    Article  PubMed  CAS  Google Scholar 

  19. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127

    Article  PubMed  CAS  Google Scholar 

  20. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69:1476–1486

    PubMed  CAS  Google Scholar 

  21. Huang CH, Vallejo JG, Kollias G, Mann DL (2009) Role of the innate immune system in acute viral myocarditis. Basic Res Cardiol 104:228–237

    Article  PubMed  CAS  Google Scholar 

  22. Jilma-Stohlawetz P, Folman CC, von dem Borne AE, Pernerstorfer T, Hollenstein U, Knechtelsdorfer M, Eichler HG, Jilma B (2001) Effects of anticoagulation on thrombopoietin release during endotoxemia. J Lab Clin Med 137:64–69

    Article  PubMed  CAS  Google Scholar 

  23. Kaushansky K (2003) Thrombopoietin: a tool for understanding thrombopoiesis. J Thromb Haemost 1:1587–1592

    Article  PubMed  CAS  Google Scholar 

  24. Kosugi S, Kurata Y, Tomiyama Y, Tahara T, Kato T, Tadokoro S, Shiraga M, Honda S, Kanakura Y, Matsuzawa Y (1996) Circulating thrombopoietin level in chronic immune thrombocytopenic purpura. Br J Haematol 93:704–706

    Article  PubMed  CAS  Google Scholar 

  25. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958

    Article  PubMed  CAS  Google Scholar 

  26. Kumar A, Brar R, Wang P, Dee L, Skorupa G, Khadour F, Schulz R, Parrillo JE (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R276

    PubMed  CAS  Google Scholar 

  27. Kumar A, Haery C, Parrillo JE (2001) Myocardial dysfunction in septic shock: part I. Clinical manifestation of cardiovascular dysfunction. J Cardiothorac Vasc Anesth 15:364–376

    Article  PubMed  CAS  Google Scholar 

  28. Kumar A, Krieger A, Symeoneides S, Kumar A, Parrillo JE (2001) Myocardial dysfunction in septic shock: part II. Role of cytokines and nitric oxide. J Cardiothorac Vasc Anesth 15:485–511

    Article  PubMed  CAS  Google Scholar 

  29. Kumar A, Paladugu B, Mensing J, Kumar A, Parrillo JE (2007) Nitric oxide-dependent and -independent mechanisms are involved in TNF-alpha-induced depression of cardiac myocyte contractility. Am J Physiol 292:R1900–R1906

    CAS  Google Scholar 

  30. Kuter DJ, Begley CG (2002) Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 100:3457–3469

    Article  PubMed  CAS  Google Scholar 

  31. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  32. Li K, Sung RY, Huang WZ, Yang M, Pong NH, Lee SM, Chan WY, Zhao H, To MY, Fok TF, Li CK, Wong YO, Ng PC (2006) Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation 113:2211–2220

    Article  PubMed  CAS  Google Scholar 

  33. Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L (2010) Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105:139–150

    Google Scholar 

  34. Lupia E, Bosco O, Bergerone S, Dondi AE, Goffi A, Oliaro E, Cordero M, Del Sorbo L, Trevi G, Montrucchio G (2006) Thrombopoietin contributes to enhanced platelet activation in patients with unstable angina. J Am Coll Cardiol 48:2195–2203

    Article  PubMed  CAS  Google Scholar 

  35. Lupia E, Bosco O, Mariano F, Dondi AE, Goffi A, Spatola T, Cuccurullo A, Tizzani P, Brondino G, Stella M, Montrucchio G (2009) Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation. J Thromb Haemost 7:1000–1008

    Article  PubMed  CAS  Google Scholar 

  36. Merx MW, Weber C (2007) Sepsis and the heart. Circulation 116:793–802

    Article  PubMed  CAS  Google Scholar 

  37. Montrucchio G, Brizzi MF, Calosso G, Marengo S, Pegoraro L, Camussi G (1996) Effects of recombinant human megakaryocyte growth and development factor on platelet activation. Blood 87:2762–2768

    PubMed  CAS  Google Scholar 

  38. Oda A, Miyakawa Y, Druker BJ, Ozaki K, Yabusaki K, Shirasawa Y, Handa M, Kato T, Miyazaki H, Shimosaka A, Ikeda Y (1996) Thrombopoietin primes human platelet aggregation induced by shear stress and by multiple agonists. Blood 87:4664–4670

    PubMed  CAS  Google Scholar 

  39. Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  40. Post H, Schulz R, Gres P, Heusch G (2001) No involvement of nitric oxide in the limitation of beta-adrenergic inotropic responsiveness during ischemia. Am J Physiol Heart Circ Physiol 281:H2392–H2397

    PubMed  CAS  Google Scholar 

  41. Roman-Campos D, Duarte HL, Sales PA Jr, Natali AJ, Ropert C, Gazzinelli RT, Cruz JS (2009) Changes in cellular contractility and cytokines profile during Trypanosoma cruzi infection in mice. Basic Res Cardiol 104:238–246

    Article  PubMed  CAS  Google Scholar 

  42. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608

    Article  PubMed  Google Scholar 

  43. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413

    Article  PubMed  CAS  Google Scholar 

  44. Senaran H, Ileri M, Altinbas A, Kosar A, Yetkin E, Ozturk M, Karaaslan Y, Kirazli S (2001) Thrombopoietin and mean platelet volume in coronary artery disease. Clin Cardiol 24:405–408

    Article  PubMed  CAS  Google Scholar 

  45. Silverman HJ, Lee NH, el-Fakahany EE (1990) Effects of canine endotoxin shock on lymphocytic beta-adrenergic receptors. Circ Shock 32:293–306

    PubMed  CAS  Google Scholar 

  46. Silverman HJ, Penaranda R, Orens JB, Lee NH (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21:31–39

    Article  PubMed  CAS  Google Scholar 

  47. Stohlawetz P, Folman CC, von dem Borne AE, Pernerstorfer T, Eichler HG, Panzer S, Jilma B (1999) Effects of endotoxemia on thrombopoiesis in men. Thromb Haemost 81:613–617

    PubMed  CAS  Google Scholar 

  48. Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, Isoda T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA (2005) cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96:100–109

    Article  PubMed  CAS  Google Scholar 

  49. Thielmann M, Dorge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, Konietzka I, Buchert A, Kruger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 90:807–813

    Article  PubMed  CAS  Google Scholar 

  50. Tibbles HE, Navara CS, Hupke MA, Vassilev AO, Uckun FM (2002) Thrombopoietin induces p-selectin expression on platelets and subsequent platelet/leukocyte interactions. Biochem Biophys Res Commun 292:987–991

    Article  PubMed  CAS  Google Scholar 

  51. von Haehling S, Jankowska EA, Anker SD (2004) Tumour necrosis factor-alpha and the failing heart—pathophysiology and therapeutic implications. Basic Res Cardiol 99:18–28

    Article  CAS  Google Scholar 

  52. Zakynthinos SG, Papanikolaou S, Theodoridis T, Zakynthinos EG, Christopoulou-Kokkinou V, Katsaris G, Mavrommatis AC (2004) Sepsis severity is the major determinant of circulating thrombopoietin levels in septic patients. Crit Care Med 32:1004–1010

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MURST) ex-60% to GM and GA, and Progetto di Ricerca Sanitaria Finalizzata—Regione Piemonte to GM, GA, and EL.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Montrucchio.

Additional information

G. Alloatti and G. Montrucchio equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupia, E., Spatola, T., Cuccurullo, A. et al. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 105, 609–620 (2010). https://doi.org/10.1007/s00395-010-0103-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0103-6

Keywords

Navigation