Skip to main content

Advertisement

Log in

Hepatocyte growth factor/Met gene transfer in cardiac stem cells—potential for cardiac repair

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The adult heart has been recently recognized as a self-renewing organ that contains a pool of committed resident cardiac stem cells (CSCs) and cardiac progenitor cells (CPCs). These adult CSCs and CPCs can be induced by cytokines and growth factors to migrate, differentiate, and proliferate in situ and potentially replace lost cardiomyocytes. Ligand-receptor systems, such as the tyrosine kinase receptor mesenchymal–epithelial transition factor (Met) and its ligand hepatocyte growth factor (HGF), are potential candidates for boosting migration, engraftment and commitment of CSCs. Here, we discuss the possible application of HGF/Met gene therapy to enhance the ability of CSCs to promote myocardial regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  2. Abdel-Latif A, Zuba-Surma EK, Case J, Tiwari S, Hunt G, Ranjan S, Vincent RJ, Srour EF, Bolli R, Dawn B (2008) TGF-beta1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells. Basic Res Cardiol 103(6):514–524

    Article  CAS  PubMed  Google Scholar 

  3. Adams DH, Harvath L, Bottaro DP, Interrante R, Catalano G, Tanaka Y, Strain A, Hubscher SG, Shaw S (1994) Hepatocyte growth factor and macrophage inflammatory protein 1 beta: structurally distinct cytokines that induce rapid cytoskeletal changes and subset-preferential migration in T cells. Proc Natl Acad Sci USA 91:7144–7148

    Article  CAS  PubMed  Google Scholar 

  4. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479

    Article  CAS  PubMed  Google Scholar 

  5. Bell LN, Cai L, Johnstone BH, Traktuev DO, March KL, Considine RV (2008) A central role for hepatocyte growth factor in adipose tissue angiogenesis. Am J Physiol Endocrinol Metab 294:E336–E344

    Article  CAS  PubMed  Google Scholar 

  6. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  7. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  CAS  PubMed  Google Scholar 

  8. Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8:404–410

    Article  CAS  PubMed  Google Scholar 

  9. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804

    Article  CAS  PubMed  Google Scholar 

  10. Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, March KL (2009) IFATS series: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 27(1):230–237

    Article  CAS  PubMed  Google Scholar 

  11. Case SS, Price MA, Jordan CT, Yu XJ, Wang L, Bauer G, Haas DL, Xu D, Stripecke R, Naldini L, Kohn DB, Crooks GM (1999) Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 96:2988–2993

    Article  CAS  PubMed  Google Scholar 

  12. Dawn B, Bolli R (2005) Cardiac progenitor cells: the revolution continues. Circ Res 97:1080–1082

    Article  CAS  PubMed  Google Scholar 

  13. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102:3766–3771

    Article  CAS  PubMed  Google Scholar 

  14. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, Sands MS (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science 317:477

    Article  CAS  PubMed  Google Scholar 

  15. Emi N, Friedmann T, Yee JK (1991) Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol 65:1202–1207

    CAS  PubMed  Google Scholar 

  16. Follenzi A, Santambrogio L, Annoni A (2007) Immune responses to lentiviral vectors. Curr Gene Ther 7:306–315

    Article  CAS  PubMed  Google Scholar 

  17. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M, Di Nardo P (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24:23–33

    Article  CAS  PubMed  Google Scholar 

  18. Gherardi E, Stoker M (1991) Hepatocyte growth factor–scatter factor: mitogen, motogen, and met. Cancer Cells 3:227–232

    CAS  PubMed  Google Scholar 

  19. Graziani A, Gramaglia D, Cantley LC, Comoglio PM (1991) The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem 266:22087–22090

    CAS  PubMed  Google Scholar 

  20. Guan K, Hasenfuss G (2007) Do stem cells in the heart truly differentiate into cardiomyocytes? J Mol Cell Cardiol 43:377–387

    Article  CAS  PubMed  Google Scholar 

  21. Guo Y, He J, Wu J, Yang L, Dai S, Tan X, Liang L (2008) Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 39:179–188

    Article  CAS  PubMed  Google Scholar 

  22. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103(6):525–536

    Article  PubMed  Google Scholar 

  23. Hamasuna R, Kataoka H, Moriyama T, Itoh H, Seiki M, Koono M (1999) Regulation of matrix metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying up-regulation of membrane type-1 MMP. Int J Cancer 82:274–281

    Article  CAS  PubMed  Google Scholar 

  24. Hogan BL, Kolodziej PA (2002) Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet 3:513–523

    Article  CAS  PubMed  Google Scholar 

  25. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafe M, Nadal-Ginard B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    Article  CAS  PubMed  Google Scholar 

  26. Kaur S, Kumar TR, Uruno A, Sugawara A, Jayakumar K, Kartha CC (2009) Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol 104(6):739–749

    Article  PubMed  Google Scholar 

  27. Kopp JB (1998) Hepatocyte growth factor: mesenchymal signal for epithelial homeostasis. Kidney Int 54:1392–1393

    Article  CAS  PubMed  Google Scholar 

  28. Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622

    Article  CAS  PubMed  Google Scholar 

  29. Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, Wang G (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 103(3):265–273

    Article  CAS  PubMed  Google Scholar 

  30. Lever AM (1996) HIV and other lentivirus-based vectors. Gene Ther 3:470–471

    CAS  PubMed  Google Scholar 

  31. Li B, Zeng Q, Wang H, Shao S, Mao X, Zhang F, Li S, Guo Z (2007) Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coron Artery Dis 18(3):221–227

    Article  PubMed  Google Scholar 

  32. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971

    Article  CAS  PubMed  Google Scholar 

  33. Lowenstein PR, Mandel RJ, Xiong WD, Kroeger K, Castro MG (2007) Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 7:347–360

    Article  CAS  PubMed  Google Scholar 

  34. Madonna R, Geng YJ, De Caterina R (2009) Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol 29(11):1723–1729

    Article  CAS  PubMed  Google Scholar 

  35. Marsboom G, Janssens S (2008) Endothelial progenitor cells: new perspectives and applications in cardiovascular therapies. Expert Rev Cardiovasc Ther 6:687–701

    Article  CAS  PubMed  Google Scholar 

  36. Mazo M, Planat-Benard V, Abizanda G, Pelacho B, Leobon B, Gavira JJ, Penuelas I, Cemborain A, Penicaud L, Laharrague P, Joffre C, Boisson M, Ecay M, Collantes M, Barba J, Casteilla L, Prosper F (2008) Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail 10:454–462

    Article  PubMed  Google Scholar 

  37. McCall-Culbreath KD, Li Z, Zutter MM (2008) Crosstalk between the alpha2beta1 integrin and c-met/HGF-R regulates innate immunity. Blood 111:3562–3570

    Article  CAS  PubMed  Google Scholar 

  38. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294

    Article  PubMed  Google Scholar 

  39. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465

    Article  CAS  PubMed  Google Scholar 

  40. Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T (1998) Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 101:1827–1834

    Article  CAS  PubMed  Google Scholar 

  41. Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, Wang X, Zarnegar R, Michalopoulos GK (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071

    CAS  PubMed  Google Scholar 

  42. Morishita R, Aoki M, Hashiya N, Yamasaki K, Kurinami H, Shimizu S, Makino H, Takesya Y, Azuma J, Ogihara T (2004) Therapeutic angiogenesis using hepatocyte growth factor (HGF). Curr Gene Ther 4:199–206

    CAS  PubMed  Google Scholar 

  43. Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W (2004) Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22:405–414

    Article  CAS  PubMed  Google Scholar 

  44. Oh SH, Miyazaki M, Kouchi H, Inoue Y, Sakaguchi M, Tsuji T, Shima N, Higashio K, Namba M (2000) Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem Biophys Res Commun 279:500–504

    Article  CAS  PubMed  Google Scholar 

  45. Okunishi K, Dohi M, Nakagome K, Tanaka R, Mizuno S, Matsumoto K, Miyazaki J, Nakamura T, Yamamoto K (2005) A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 175:4745–4753

    CAS  PubMed  Google Scholar 

  46. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  PubMed  Google Scholar 

  47. Pollack AL, Runyan RB, Mostov KE (1998) Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell-cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev Biol 204:64–79

    Article  CAS  PubMed  Google Scholar 

  48. Rabbany SY, Pastore J, Yamamoto M, Miller T, Rafii S, Aras R, Penn M (2009) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transpl. doi:10.3727/096368909X481782

  49. Rappolee DA, Iyer A, Patel Y (1996) Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis. Circ Res 78:1028–1036

    CAS  PubMed  Google Scholar 

  50. Roggia C, Ukena C, Bohm M, Kilter H (2007) Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res 313:921–930

    Article  CAS  PubMed  Google Scholar 

  51. Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170

    Article  CAS  PubMed  Google Scholar 

  52. Rosario M, Birchmeier W (2003) How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol 13:328–335

    Article  CAS  PubMed  Google Scholar 

  53. Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, Keating SC, Parker TG, Backx PH, Keating A (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26:2884–2892

    Article  CAS  PubMed  Google Scholar 

  54. Rota M, Kajstura J, Hosoda T, Bearzi C, Vitale S, Esposito G, Iaffaldano G, Padin-Iruegas ME, Gonzalez A, Rizzi R, Small N, Muraski J, Alvarez R, Chen X, Urbanek K, Bolli R, Houser SR, Leri A, Sussman MA, Anversa P (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104:17783–17788

    Article  CAS  PubMed  Google Scholar 

  55. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44:1690–1699

    Article  PubMed  Google Scholar 

  56. Schenke-Layland K, Strem B, Jordan M, Deemedio M, Hedrick M, Roos K, Fraser J, Maclellan W (2009) Adipose tissue derived cells improve cardiac function following myocardial infarction. J Surg Res 153(2):217–223

    Article  CAS  PubMed  Google Scholar 

  57. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW, Weber C (2008) Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 103(1):69–77

    Article  PubMed  Google Scholar 

  58. Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296:H1888–H1897

    Article  CAS  PubMed  Google Scholar 

  59. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  60. Svensson EC, Marshall DJ, Woodard K, Lin H, Jiang F, Chu L, Leiden JM (1999) Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99:201–205

    CAS  PubMed  Google Scholar 

  61. Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R, Matsumoto K, Nakamura T, Takahashi H, Okamoto E, Fujimoto J (1999) Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med 5:226–230

    Article  CAS  PubMed  Google Scholar 

  62. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673

    Article  CAS  PubMed  Google Scholar 

  63. Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28:2667–2677

    Article  PubMed  Google Scholar 

  64. Van’t Hof W, Mal N, Huang Y, Zhang M, Popovic Z, Forudi F, Deans R, Penn MS (2007) Direct delivery of syngeneic and allogeneic large-scale expanded multipotent adult progenitor cells improves cardiac function after myocardial infarct. Cytotherapy 9:477–487

    Article  Google Scholar 

  65. van der Voort R, Taher TE, Keehnen RM, Smit L, Groenink M, Pals ST (1997) Paracrine regulation of germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor pathway. J Exp Med 185:2121–2131

    Article  PubMed  Google Scholar 

  66. Weidner KM, Arakaki N, Hartmann G, Vandekerckhove J, Weingart S, Rieder H, Fonatsch C, Tsubouchi H, Hishida T, Daikuhara Y et al (1991) Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 88:7001–7005

    Article  CAS  PubMed  Google Scholar 

  67. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111:2097–2108

    Article  CAS  PubMed  Google Scholar 

  68. Weimar IS, de Jong D, Muller EJ, Nakamura T, van Gorp JM, de Gast GC, Gerritsen WR (1997) Hepatocyte growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood 89:990–1000

    CAS  PubMed  Google Scholar 

  69. Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF, Testa JR (2001) Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA 98:247–252

    Article  CAS  PubMed  Google Scholar 

  70. Yamada Y, Wang X, Yokoyama S, Fukuda N, Takakura N (2006) Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem Biophys Res Commun 342(2):662–670

    Article  CAS  PubMed  Google Scholar 

  71. Yamaura K, Ito K, Tsukioka K, Wada Y, Makiuchi A, Sakaguchi M, Akashima T, Fujimori M, Sawa Y, Morishita R, Matsumoto K, Nakamura T, Suzuki J, Amano J, Isobe M (2004) Suppression of acute and chronic rejection by hepatocyte growth factor in a murine model of cardiac transplantation: induction of tolerance and prevention of cardiac allograft vasculopathy. Circulation 110:1650–1657

    Article  CAS  PubMed  Google Scholar 

  72. Zhang D-Z, Gai L-Y, Liu H-W, Jin Q-H, Huang J-H, Zhu X-Y (2007) Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chin Med J 120(4):300–307

    PubMed  Google Scholar 

  73. Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J (2008) Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A 14:1025–1036

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41

    Article  CAS  PubMed  Google Scholar 

  75. Zhu XY, Zhang XZ, Xu L, Zhong XY, Ding Q, Chen YX (2009) Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochem Biophys Res Commun 379:1084–1090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The original studies here reported were supported by National Institutes of Health grants R01 HL55757, HL-70897, HL-76794, and HL78825 (to R. Bolli); and grants by the Italian Ministry of Research and Scientific Research and the Istituto Italiano Ricerche Cardiovascolari (to Prof. R. De Caterina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalinda Madonna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madonna, R., Rokosh, G., De Caterina, R. et al. Hepatocyte growth factor/Met gene transfer in cardiac stem cells—potential for cardiac repair. Basic Res Cardiol 105, 443–452 (2010). https://doi.org/10.1007/s00395-010-0102-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0102-7

Keywords

Navigation