Skip to main content
Log in

Kinases and phosphatases in ischaemic preconditioning: a re-evaluation

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Activation of several protein kinases occurs during myocardial ischaemia and during subsequent reperfusion. In contrast to the intensive investigation into the significance of kinase activation in cardioprotection, relatively little is known about the role of the phosphatases in this regard. The aim of this study was to re-evaluate the putative roles of PP1 and PP2A in ischaemia/reperfusion and in triggering ischaemic preconditioning. Isolated perfused working rat hearts were subjected to sustained global (15 or 20 min) or regional ischaemia (35 min), followed by reperfusion. Hearts were preconditioned using global ischaemia (1 × 5 or 3 × 5 min, alternated with 5 min reperfusion). To inhibit both PP1 and PP2A cantharidin (5 μM) was used. To inhibit PP2A only, okadaic acid (7.5 nM) was used. The drugs were administered during the preconditioning protocol, before onset of sustained ischaemia (pretreatment) or during reperfusion. Endpoints were mechanical recovery during reperfusion, infarct size and activation of PKB/Akt, p38 MAPK and ERK p42/p44, as determined by Western blot. Pretreatment of hearts with okadaic acid or cantharidin caused a significant reduction in mechanical recovery after 15 or 20 min global ischaemia. Administration of the drugs during an ischaemic preconditioning protocol abolished functional recovery during reperfusion and significantly increased infarct size. Administration of the drugs during reperfusion had no deleterious effects and increased functional recovery in 3 × PC hearts. To find an explanation for the differential effects of the inhibitors depending on the time of administration, hearts were freeze-clamped at different time points during the perfusion protocol. Administration of cantharidin before 5 min ischaemia activated all kinases. Subsequent reperfusion for 5 min without the drug maintained activation of the kinases until the onset of sustained ischaemia. Cantharidin given during preconditioning was associated with activation of p38MAPK and PKB/Akt during reperfusion after sustained ischaemia. However, administration of the drug during reperfusion only after sustained ischaemia caused activation of both PKB/Akt and ERK p42/p44. Phosphatase inhibition immediately prior to the onset of sustained ischaemia or during preconditioning abolishes protection during reperfusion, while inhibition of these enzymes during reperfusion either had no effect or enhanced the cardioprotective effects of preconditioning. It is proposed that inhibition of phosphatases during reperfusion may prolong the period of RISK activation and hence protect the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams DG, Coffee RL Jr, Zhang H, Pelech S, Strack S, Wadzinski BE (2005) Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes. J Biol Chem 280:42644–42654

    Article  CAS  PubMed  Google Scholar 

  2. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y (1997) Oxidative stress activates extracellular signal-regulated kinases through Sre and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100:1813–1821

    Article  CAS  PubMed  Google Scholar 

  3. Anjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted serum and protein phosphatase inhibitors. Proc Nat Acad Sci 193:5699–5709

    Article  Google Scholar 

  4. Avdi NJ, Malcolm KC, Nick JA, Worthen GS (2002) A role for protein phosphatase 2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH2-terminal kinase pathway in human neutrophils. J Biol chem 277:40687–40696

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong SC, Gao W, Lane JR, Ganote CE (1998) Protein phosphatase inhibitors calyculin A and fostriecin protect rabbit cardiomyocytes in late ischemia. J Mol Cell Cardiol 30:61–73

    Article  CAS  PubMed  Google Scholar 

  6. Barancik M, Htun P, Schaper W (1999) Okadaic acid and anisomycin are protective and stimulate the SAPK/JNK pathway. J Cardiovasc Pharmacol 34:182–190

    Article  CAS  PubMed  Google Scholar 

  7. Bassi R, Heads R, Marber MS, Clark JE (2008) Targeting p38-MAPK in the ischemic heart: kill or cure? Curr Opin Pharmacol 8:141–146

    Article  CAS  PubMed  Google Scholar 

  8. Boudreau RT, Conrad DM, Hoskin DW (2007) Apoptosis induced by protein phosphatase 2A (PP2A) inhibition in T leukemia cells is negatively regulated by PP2A associated p38 mitogen-activated protein kinase. Cell Signal 19:139–151

    Article  CAS  PubMed  Google Scholar 

  9. Bueno DF, Lips DL, Kaiser RA, Wilkens BJ, Dai Y-S, Glascock BJ, Klevitsky R, Hewett TE, Kimball TR, Aronow BJ, Doevendans PA, Molkentin JD (2004) Calcineurin Aβ gene targeting predisposes the myocardium to acute ischemia-induced apoptosis and dysfunction. Circ Res 941:91–99

    Article  Google Scholar 

  10. Cardone MH, Roy N, Stennicke HR, Salvesan GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  CAS  PubMed  Google Scholar 

  11. Cai Z, Semenza GL (2005) PTEN activity is modulated during ischemia and reperfusion. Involvement in the induction and decay of preconditioning. Circ Res 97:1351–1359

    Article  CAS  PubMed  Google Scholar 

  12. Cicconi S, Ventura N, Pastore D, Bonini P, Di Navdo P, Lauro R, Marlier LN (2003) Characterization of apoptosis signal transduction pathways in HL-5 cardiomyocytes exposed to ischemia/reperfusion oxidative stress. J Cell Physiol 195:27–37

    Article  CAS  PubMed  Google Scholar 

  13. Cohen P, Cohen PT (1989) Protein phosphatases come of age. J Biol Chem 264:21435–21438

    CAS  PubMed  Google Scholar 

  14. Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. J Eur Biochem 258:729–735

    Article  CAS  Google Scholar 

  15. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM (2000) Serine/threonine protein kinases and apoptosis. Exp Cell Res 256:34–41

    Article  CAS  PubMed  Google Scholar 

  16. Das M, Das DK (2008) Molecular mechanism of preconditioning. IUBMB Life 60:199–203

    Article  CAS  PubMed  Google Scholar 

  17. De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW, Kitsis RN, Molkentin JD (2000) Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo; an apoptosis-independent model of dilated heart failure. Circ Res 86:255–263

    PubMed  Google Scholar 

  18. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  CAS  PubMed  Google Scholar 

  19. Downward J (1999) How BAD phosphorylation is good for survival. Nat Cell Biol 1:E33–E35

    Article  CAS  PubMed  Google Scholar 

  20. Fan W-J, Genade S, Genis A, Huisamen B, Lochner A (2009) Dexamethasone-induced cardioprotection: a role for the phosphatase MKP-1? Life Sci 84:838–846

    Article  CAS  PubMed  Google Scholar 

  21. Faris B, Peyner J, Wassef M, Bel A, Mouas C, Duriez M, Menasche P (1997) Failure of preconditioning to improve postcardioplegic stunning of minimally infarcted hearts. Ann Thorac Surg 64:1735–1741

    Article  CAS  PubMed  Google Scholar 

  22. Fenton RA, Dickson EW, Dobson JG (2005) Inhibition of phosphatase activity enhances preconditioning and limits cell death in the ischemic/reperfused aged rat heart. Life Sci 77:3375–3388

    Article  CAS  PubMed  Google Scholar 

  23. Fryer RM, Pratt PF, Hsu AK, Gross GJ (2001) Differential activation of extracellular signal-regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296:642–649

    CAS  PubMed  Google Scholar 

  24. Gombosova I, Boknik P, Kirchhefer U, Knapp U, Luss H, Muller FU, Vahlensieck U, Schmitz W, Bodor GS, Neumann J (1998) Postnatal changes in contractile time parameters, calcium regulatory proteins and phosphatases. Am J Physiol 274:2123–2132

    Google Scholar 

  25. Hardt SE, Sadoshima J (2002) Glycogen synthase kinase-3β: a novel regulator of cardiac hypertrophy and development. Circ Res 90:1055–1063

    Article  CAS  PubMed  Google Scholar 

  26. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976

    Article  CAS  PubMed  Google Scholar 

  27. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischaemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75

    Article  CAS  PubMed  Google Scholar 

  28. Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR (2004) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 287:841–849

    Article  Google Scholar 

  29. Heusch G (2009) No RISK, no… cardioprotection? A clinical perspective. Cardiovasc Res 84:173–175

    Article  CAS  PubMed  Google Scholar 

  30. Heusch G, Boengler R, Schulz R (2008) Cardioprotection. Nitric oxide, protein kinase and mitochondria. Circulation 118:1915–1919

    Article  PubMed  Google Scholar 

  31. Herzig S, Neumann J (2000) Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 80:173–210

    CAS  PubMed  Google Scholar 

  32. Huang B, Wang S, Qin D, Bontjdir M, El-Sherif N (1999) Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of beta-adrenergic pathway, Gi protein, phosphodiesterase and phosphatases. Circ Res 85:948–953

    Google Scholar 

  33. Ingebritsen TS, Stewart AA, Cohen P (1983) The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. J Eur Biochem 132:297–307

    Article  CAS  Google Scholar 

  34. Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, Fusentani N, Watabe S, Hashimoto K, Nemura D, Hartshorne DJ (1989) CalyculinA and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159:871–877

    Article  CAS  PubMed  Google Scholar 

  35. Iwakara A, Fujita M, Hasegawa K, Toyokuni S, Sawamura T, Nohara R, Sasayama S, Komeda M (2001) Pericardial fluid from patients with ischemic heart disease induces myocardial cell apoptosis via an oxidant stress-sensitive p38 mitogen-activated protein kinase pathway. J Mol Cell Cardiol 33:419–430

    Article  Google Scholar 

  36. Jenkins DP, Bugsley WB, Yellon DM (1995) Ischaemic preconditioning in a model of global ischaemia: infarct size limitation but no reduction in stunning. J Mol Cell Cardiol 27:1623–1632

    Article  CAS  PubMed  Google Scholar 

  37. Juntilla MR, Li S-P, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965

    Article  Google Scholar 

  38. Kannengieser GJ, Opie LH, Van der Werff TJ (1979) Impaired cardiac work and oxygen uptake after reperfusion of regionally ischaemic myocardium. J Mol Cell Cardiol 11:197–207

    Article  Google Scholar 

  39. Ladilov Y, Maxeiner H, Wolf C, Scäfer C, Meuter K, Piper HM (2002) Role of protein phosphatases in hypoxic preconditioning. Am J Physiol Heart Circ Physiol 283:H1092–H1098

    CAS  PubMed  Google Scholar 

  40. Latronico M, Costinean S, Latitrano ML, Peschle C, Condorelli G (2004) Regulation of cell size and contractile function by Akt in cardiomyocytes. Ann NY Acad Sci 1015:250–260

    Article  CAS  PubMed  Google Scholar 

  41. Liem DA, Gho CC, Gho BC, Kazim S, Manintveld OC, Verdouw PD, Dunker DJ (2004) The tyrosine phosphatase inhibitor B15 (maltolato) oxovanadium attenuates myocardial reperfusion injury by opening ATP-sensitive potassium channels. J Pharm Exp Ther 309:1256–1262

    Article  CAS  Google Scholar 

  42. Linck B, Boknik P, Knapp J, Muller U, Neumann J, Schmitz W, Vahlensieck U (1996) Effects of cantharidin on force of contraction and phosphatase activity in nonfailing and failing human hearts. Br J Pharmacol 119:545–550

    CAS  PubMed  Google Scholar 

  43. Liu Q, Hofmann PA (2003) Modulation of protein phosphatase 2a by adenosine A1 receptors in cardiomyocytes: role for p38MAPK. J Am Physiol Heart Circ Physiol 285:97–103

    Google Scholar 

  44. Lochner A, Genade S, Moolman JA (2003) Ischemic preconditioning: infarct size is a more reliable endpoint than functional recovery. Basic Res Cardiol 98:337–346

    Article  CAS  PubMed  Google Scholar 

  45. Lu C, Kumar R, Akita T, Joyner RW (1994) Developmental changes in the actions of phosphatase inhibitors on calcium current of rabbit heart cells. Pflugers Arch 427:389–398

    Article  CAS  PubMed  Google Scholar 

  46. Ma XL, Kumar S, Gao F, Londen CS, Lopez BL, Christopher TA, Wang C, Lee JC, Fenarstein GZ, Yue TL (1999) Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685–1691

    CAS  PubMed  Google Scholar 

  47. MacKay K, Mochley-Rosen D (2000) Involvement of a p38 mitogen-activated protein kinase phosphatase in protecting neonatal rat cardiac myocytes from ischemia. J Mol Cell Cardiol 32:1585–1588

    Article  CAS  PubMed  Google Scholar 

  48. Marais E, Genade S, Huisamen B, Strijdom JG, Moolman JA, Lochner A (2001) Activation of p38MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated by attenuated p38MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol 33:769–778

    Article  CAS  PubMed  Google Scholar 

  49. Marais E, Genade S, Salie R, Huisamen B, Maritz S, Moolman JA, Lochner A (2005) The temporal relationship between p38MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Res Cardiol 100:35–47

    Article  CAS  PubMed  Google Scholar 

  50. Gehringer MM(2004) Microcystin-LR and okadaic acid induced cellular effects: a dualistic response. Febs Lett 557:1–8

    Google Scholar 

  51. Moolman JA, Hartley S, Van Wyk J, Marais E, Lochner A (2006) Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38MAPK. Cardiovasc Drugs Ther 20:13–25

    Article  CAS  PubMed  Google Scholar 

  52. Morana S, Wolf CM, Li J, Reynolds JE, Brown MK, Eastman A (1996) The involvement of protein phosphatases in the activation of ICE/CED-3 protease, intracellular acidification, DNA digestion and apoptosis. J Biol Chem 271:18263–18271

    Article  CAS  PubMed  Google Scholar 

  53. Neumann J, Herzig S, Boknik P, Apel M, Kaspareit G, Schmitz W, Scholz H, Tepel M, Zimmerman N (1995) On the contractile, biochemical and electrophysiological effects of cantharidin, a phosphatase inhibitor. J Pharmacol Exp Ther 274:530–539

    CAS  PubMed  Google Scholar 

  54. Prickett TD, Brautigan DL (2007) Cytokine activation of p38 mitogen-activated protein kinase and apoptosis is opposed by alpha-4 targeting of protein phosphatase 2A for site-specific dephosphorylation of MEK3. Mol Cell Biol 27:4217–4227

    Article  CAS  PubMed  Google Scholar 

  55. Przyklenk K, Kloner RA (1998) Ischemic preconditioning: exploring the paradox. Prog Cardiovasc Dis 40:517–547

    Article  CAS  PubMed  Google Scholar 

  56. Ruan H, Li J, Ren S, Gao J, Li G, Kim R, Wu H, Wang Y (2009) Inducible and cardiac specific PTEN inactivation protects ischemia/reperfusion injury. J Mol Cell Cardiol 46:193–200

    Article  CAS  PubMed  Google Scholar 

  57. Sanada S, Kitakaze M, Papst PJ, Hatanaka K, Asanuma H, Aki T, Shinozaki Y, Ogita H, Node K, Takashima S, Asakura M, Yamoda J, Fukushima T, Ogai A, Kuzuya T, Mori H, Terada N, Yoshida K, Hori M (2001) Role of phasic dynamism of p38 mitogen activated protein kinase activation in ischemic preconditioning of the canine heart. Circ Res 88:175–180

    CAS  PubMed  Google Scholar 

  58. Sanna B, Bueno DF, Dai YS, Wilkens BJ, Molkentin JD (2005) Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol Cell Biol 25:865–878

    Article  CAS  PubMed  Google Scholar 

  59. Schneider S, Chen W, Hon J, Steenbergen C, Murphy E (2001) Inhibition of p38MAPK α/β reduces ischemic injury and does not block protective effects of preconditioning. Am J Physiol 280:H499–H508

    CAS  Google Scholar 

  60. Siddall HK, Warrell CE, Yellon DM, Mocanu MM (2008) Ischemia–reperfusion injury and cardioprotection: investigating PTEN, the phosphatase that negatively regulates PI3K, using a congenital model of PTEN haploinsufficiency. Basic Res Cardiol 103:560–568

    Article  CAS  PubMed  Google Scholar 

  61. Steenbergen C (2002) The role of p38 mitogen-activated protein kinase in myocardial ischaemia/reperfusion injury: relationship to ischemic preconditioning. Basic Res Cardiol 97:276–285

    Article  CAS  PubMed  Google Scholar 

  62. Stenslokken KO, Rutkovskiy A, Hafstad AD, Larsen TS, Vaage J (2009) Inadvertent phosphorylation of survival kinases in isolated perfused hearts: a word of caution. Basic Res Cardiol 104:412–423

    Article  CAS  PubMed  Google Scholar 

  63. Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M, Mumby M (1993) The interaction of SV40 small tumor antigen with protein phosphatase A2 stimulates the map kinase pathway and induces cell proliferation. Cell 75:887–897

    Article  CAS  PubMed  Google Scholar 

  64. Totzeck A, Boengler K, Van de Sand A, Konietzka I, Gres P, Garcia-Dorado D, Heusch G, Schulz R (2008) No impact of phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol 295:H2106–H2112

    Article  CAS  PubMed  Google Scholar 

  65. Ugi S, Imamura T, Maegawa H, Yoshizaki T, Shi K, Obata T, Ebina Y, Kashiwagi A, Olefsky JM (2004) Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol 24:8778–8789

    Article  CAS  PubMed  Google Scholar 

  66. Vahlhaus C, Schulz R, Post H, Rose J, Heusch G (1998) Prevention of ischemic preconditioning only by combined inhibition of protein kinase C and protein tyrosine kinase in pigs. J Mol Cell Cardiol 30:197–209

    Article  CAS  PubMed  Google Scholar 

  67. Weinbrenner C, Baines CP, Liu GS, Armstrong SC, Ganote CE, Walsh AH, Honkanen RE, Cohen MV, Downey JM (1999) Fostriecin, an inhibitor of protein phosphatase 2A, limits myocardial infarct size even when administered after onset of ischemia. Circulation 98:899–905

    Google Scholar 

  68. Westermarck J, Li SP, Kallunki T, Han J, Kahari VM (2001) p38-mitogen activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Mol Cell Biol 21:2373–2383

    Article  CAS  PubMed  Google Scholar 

  69. Wolf CM, Eastman A (1999) The temporal relationship between protein phosphatase, mitochondrial cytochrome C release and caspase activation in apoptosis. Exp Cell Res 247:505–513

    Article  CAS  PubMed  Google Scholar 

  70. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused rat heart. Circ Res 86:692–699

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Lochner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, W.J., van Vuuren, D., Genade, S. et al. Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Res Cardiol 105, 495–511 (2010). https://doi.org/10.1007/s00395-010-0086-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0086-3

Keywords

Navigation