Skip to main content

Advertisement

Log in

Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Recent studies have reported a marked impairment in the number and functions of endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). In view of an important role of eNOS in angiogenesis, in the present study, we evaluated the effects of eNOS gene transfer in ex vivo expanded EPCs isolated from patients with CAD. The expanded EPCs were transfected with mammalian expression vector pcDNA3.1-eNOS containing the full-length human eNOS gene using lipofectamine. About 35–40% of the eNOS–EPCs had higher expression of eNOS as compared to untransfected EPCs. EPCs transfected with pcDNA3.0-EGFP, the plasmid vector expressing green fluorescent protein (GFP) were used as control. The untransfected, GFP-transfected and eNOS-transfected EPCs were compared in terms of important functional attributes of angiogenesis such as proliferation, migration, differentiation and adhesion/integration into tube-like structures in vitro. Functional studies revealed that in the presence of defined growth conditions, compared to the untransfected and GFP-transfected cells, eNOS–EPCs from patients with CAD have a significant increase in [3H] thymidine-labeled DNA (P < 0.01), migration (14.6 ± 1.8 and 16.5 ± 1.9 vs. 23.5 ± 3.4 cells/field, P < 0.01), ability to differentiate into endothelial-like spindle-shaped cells (46 ± 4.5 and 56.5 ± 2.1 vs. 93.2 ± 6.6 cells/field, P < 0.001) and also incorporation into tube-like structures on the matrigel (GFP-EPCs: 21.25 ± 2.9 vs. GFP-eNOS-EPCs: 34.5 ± 5.5 cells/field, P < 0.05). We conclude that eNOS gene transfection is a valuable approach to augment angiogenic properties of ex vivo expanded EPCs and eNOS-modified EPCs may offer significant advantages than EPCs alone in terms of their clinical use in patients with myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376

    Article  CAS  PubMed  Google Scholar 

  2. Amano K, Matsubara H, Iba O, Okigaki M, Fujiyama S, Imada T, Kojima H, Nozawa Y, Kawashima S, Yokoyama M, Iwasaka T (2003) Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension 41:156–162

    Article  CAS  PubMed  Google Scholar 

  3. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    Article  CAS  PubMed  Google Scholar 

  4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  5. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  CAS  PubMed  Google Scholar 

  6. Channon KM, Qian H, George SE (2000) Nitric oxide synthase in atherosclerosis and vascular injury: insights from experimental gene therapy. Arterioscler Thromb Vasc Biol 20:1873–1881

    CAS  PubMed  Google Scholar 

  7. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56:1559–1568

    Article  CAS  PubMed  Google Scholar 

  8. Choi JH, Hur J, Yoon CH, Kim JH, Lee CS, Youn SW, Oh IY, Skurk C, Murohara T, Park YB, Walsh K, Kim HS (2004) Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem 279:49430–49438

    Article  CAS  PubMed  Google Scholar 

  9. Dernbach E, Randriamboavonjy V, Fleming I, Zeiher AM, Dimmeler S, Urbich C (2008) Impaired interaction of platelets with endothelial progenitor cells in patients with cardiovascular risk factors. Basic Res Cardiol 103:572–581

    Article  PubMed  Google Scholar 

  10. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98:2604–2609

    Article  CAS  PubMed  Google Scholar 

  11. Gigante B, Morlino G, Gentile MT, Persico MG, De Falco S (2006) Plgf-/-eNos-/- mice show defective angiogenesis associated with increased oxidative stress in response to tissue ischemia. FASEB J 20:970–972

    Article  CAS  PubMed  Google Scholar 

  12. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  13. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  CAS  PubMed  Google Scholar 

  14. Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, Losordo DW (2005) Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation 111:1114–11120

    Article  PubMed  Google Scholar 

  15. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105:732–738

    Article  CAS  PubMed  Google Scholar 

  16. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427

    Article  CAS  PubMed  Google Scholar 

  17. Kasibhatla S, Genestier L, Green DR (1999) Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. J Biol Chem 274:987–992

    Article  CAS  PubMed  Google Scholar 

  18. Kaur S, Jayakumar K, Kartha CC (2007) The potential of circulating endothelial progenitor cells to form colonies is inversely proportional to total vascular risk score in patients with coronary artery disease. Indian Heart J 59:475–481

    PubMed  Google Scholar 

  19. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    CAS  PubMed  Google Scholar 

  20. Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C (2008) Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 103:582–586

    Article  PubMed  Google Scholar 

  21. Kleinbongard P, Weber AA (2008) Impaired interaction between platelets and endothelial progenitor cells in diabetic patients. Basic Res Cardiol 103:569–571

    Article  PubMed  Google Scholar 

  22. Kong D, Melo LG, Mangi AA, Zhang L, Lopez-Ilasaca M, Perrella MA, Liew CC, Pratt RE, Dzau VJ (2004) Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation 109:1769–1775

    Article  CAS  PubMed  Google Scholar 

  23. Koyanagi M, Urbich C, Chavakis E, Hoffmann J, Rupp S, Badorff C, Zeiher AM, Starzinski-Powitz A, Haendeler J, Dimmeler S (2005) Differentiation of circulating endothelial progenitor cells to a cardiomyogenic phenotype depends on E-cadherin. FEBS Lett 579:6060–6066

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Han Y, Pang W, Li C, Xie X, Shyy JY, Zhu Y (2008) AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28:1789–1795

    Article  PubMed  CAS  Google Scholar 

  25. Llorens S, Jordán J, Nava E (2002) The nitric oxide pathway in the cardiovascular system. J Physiol Biochem 58:179–188

    Article  CAS  PubMed  Google Scholar 

  26. Mulders AC, Mathy MJ, Meyer zu Heringdorf D, ter Braak M, Hajji N, Olthof DC, Michel MC, Alewijnse AE, Peters SL (2009) Activation of sphingosine kinase by muscarinic receptors enhances NO-mediated and attenuates EDHF-mediated vasorelaxation. Basic Res Cardiol 104:50–59

    Article  CAS  PubMed  Google Scholar 

  27. Murasawa S, Llevadot J, Silver M, Isner JM, Losordo DW, Asahara T (2002) Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 106:1133–1139

    Article  CAS  PubMed  Google Scholar 

  28. Muscari C, Gamberini C, Carboni M, Basile I, Farruggia G, Bonafè F, Giordano E, Caldarera CM, Guarnieri C (2007) Different expression of NOS isoforms in early endothelial progenitor cells derived from peripheral and cord blood. J Cell Biochem 102:992–1001

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler Stefanie, Zeiher AndreasM (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987

    Article  PubMed  Google Scholar 

  30. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    CAS  PubMed  Google Scholar 

  31. Shivakumar K, Nair RR, Valiathan MS (1992) Paradoxical effect of cerium on collagen synthesis in cardiac fibroblasts. J Mol Cell Cardiol 24:775–780

    Article  CAS  PubMed  Google Scholar 

  32. Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, Yanaga K, Ohki T, Saku K, Nagai R (2007) Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27:813–818

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  34. Uruno A, Sugawara A, Kanatsuka H, Kagechika H, Saito A, Sato K, Kudo M, Takeuchi K, Ito S (2005) Upregulation of nitric oxide production in vascular endothelial cells by all-trans retinoic acid through the phosphoinositide 3-kinase/Akt pathway. Circulation 112:727–736

    Article  CAS  PubMed  Google Scholar 

  35. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    Article  CAS  PubMed  Google Scholar 

  36. Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, Badiwala MV, Mickle DA, Weisel RD, Fedak PW, Stewart DJ, Kutryk MJ (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109:2058–2067

    Article  CAS  PubMed  Google Scholar 

  37. Werner N, Wassmann S, Ahlers P, Schiegl T, Kosiol S, Link A, Walenta K, Nickenig G (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571

    Article  PubMed  Google Scholar 

  38. Westermann D, Riad A, Richter U, Jäger S, Savvatis K, Schuchardt M, Bergmann N, Tölle M, Nagorsen D, Gotthardt M, Schultheiss HP, Tschöpe C (2009) Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol (in press)

  39. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  CAS  PubMed  Google Scholar 

  40. Yu J, deMuinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci USA 102:10999–11004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by Department of Biotechnology, Government of India. We are grateful to the Director, Sree Chitra Tirunal Institute for Medical Sciences and Technology for providing us the necessary facilities to perform the study. We also thank the Medical Records Department of the Institute for providing the patients’ data. Dr. Savneet Kaur is the recipient of a post-doctoral fellowship by DBT, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekharan Cheranellore Kartha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S., Kumar, T.R.S., Uruno, A. et al. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol 104, 739–749 (2009). https://doi.org/10.1007/s00395-009-0039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0039-x

Keywords

Navigation