Skip to main content

Advertisement

Log in

Impact of myocardial inflammation on cytosolic and mitochondrial creatine kinase activity and expression

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The disturbance of myocardial energy metabolism has been discussed as contributing to the progression of heart failure. Little however is known about the cardiac mitochondrial/cytosolic energy transfer in murine and human inflammatory heart disease. We examined the myocardial creatine kinase (CK) system, which connects mitochondrial ATP-producing and cytosolic ATP-consuming processes and is thus of central importance to the cellular energy homeostasis. The time course of expression and enzymatic activity of mitochondrial (mtCK) and cytosolic CK (cytCK) was investigated in Coxsackievirus B3 (CVB3)-infected SWR mice, which are susceptible to the development of chronic myocarditis. In addition, cytCK activity and isoform expression were analyzed in biopsies from patients with chronic inflammatory heart disease (n = 22). Cardiac CVB3 titer in CVB3-infected mice reached its maximum at 4 days post-infection (pi) and became undetectable at 28 days pi; cardiac inflammation cumulated 14 days pi but persisted through the 28-day survey. MtCK enzymatic activity was reduced by 40% without a concurrent decrease in mtCK protein during early and acute MC. Impaired mtCK activity was correlated with virus replication and increased level of interleukine 1β (IL-1β), tumor necrosis factor α (TNFα), and elevated catalase expression, a marker for intracellular oxidative stress. A reduction in cytCK activity of 48% was observed at day 14 pi and persisted to day 28 pi. This restriction was caused by a decrease in cytCK subunit expression but also by direct inhibition of specific cytCK activity. CytCK activity and expression were also reduced in myocardial biopsies from enterovirus genome-negative patients with inflammatory heart disease. The decrease in cytCK activity correlated with the number of infiltrating macrophages. Thus, viral infection and myocardial inflammation significantly influence the myocardial CK system via restriction of specific CK activity and down-regulation of cytCK protein. These changes may contribute to the progression of chronic inflammatory heart disease and malfunction of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoniak S, Boltzen U, Riad A, Kallwellis-Opara A, Rohde M, Dorner A, Tschope C, Noutsias M, Pauschinger M, Schultheiss HP, Rauch U (2008) Viral myocarditis and coagulopathy: increased tissue factor expression and plasma thrombogenicity. J Mol Cell Cardiol 45:118–126

    Article  PubMed  CAS  Google Scholar 

  2. Beck MA, Handy J, Levander OA (2000) The role of oxidative stress in viral infections. Ann N Y Acad Sci 917:906–912

    Article  PubMed  CAS  Google Scholar 

  3. Bramos D, Ikonomidis I, Tsirikos N, Kottis G, Kostopoulou V, Pamboucas C, Papadopoulou E, Venetsanou K, Giatrakos N, Yang GZ, Nihoyannopoulos P, Toumanidis S (2008) The association of coronary flow changes and inflammatory indices to ischaemia-reperfusion microvascular damage and left ventricular remodelling. Basic Res Cardiol 103:345–55

    Article  PubMed  CAS  Google Scholar 

  4. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, Giroir B (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97:1375–1381

    PubMed  CAS  Google Scholar 

  5. Chau DH, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, Sall A, Yang D (2007) Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 12:513–524

    Article  PubMed  CAS  Google Scholar 

  6. Dolder M, Walzel B, Speer O, Schlattner U, Wallimann T (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem 278:17760–17766

    Article  PubMed  CAS  Google Scholar 

  7. Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNF-alpha in contractile dysfunction. J Mol Cell Cardiol 34: 51–62

    Article  PubMed  CAS  Google Scholar 

  8. Dörner A, Kallwellis-Opara A, Pauschinger M, Kuhl U, Schultheiss HP (2005) Cardiac autoantibodies in viral myocarditis. Heart Fail Clin 1:333–343

    Article  PubMed  Google Scholar 

  9. Freeman GL, Colston JT, Zabalgoitia M, Chandrasekar B (1998) Contractile depression and expression of proinflammatory cytokines and iNOS in viral myocarditis. Am J Physiol 274:H249-H258

    PubMed  CAS  Google Scholar 

  10. Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly RA (1996) Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609

    Article  PubMed  CAS  Google Scholar 

  11. Hiraoka Y, Kishimoto C, Kurokawa M, Ochiai H, Sasayama S (1992) Effects of polyethylene glycol conjugated superoxide dismutase on coxsackievirus B3 myocarditis in mice. Cardiovasc Res 26:956–961

    Article  PubMed  CAS  Google Scholar 

  12. Hiraoka Y, Kishimoto C, Takada H, Kurokawa M, Ochiai H, Shiraki K, Sasayama S (1993) Role of oxygen derived free radicals in the pathogenesis of coxsackievirus B3 myocarditis in mice. Cardiovasc Res 27:957–961

    Article  PubMed  CAS  Google Scholar 

  13. Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145

    Article  PubMed  CAS  Google Scholar 

  14. Khatib R, Probert A, Reyes MP, Khatib G, Chason JL (1987) Mouse strain-related variation as a factor in the pathogenesis of coxsackievirus B3 murine myocarditis. J Gen Virol 68:2981–2988

    Article  PubMed  Google Scholar 

  15. Khuchua ZA, Vasiljeva EV, Clark JF, Korchazhkina OV, Branishte T, Kapelko VI, Kuznetsov AV, Ventura-Clapier R, Steinschneider AY, Lakomkin VL (1992) The creatine kinase system and cardiomyopathy. Am J Cardiovasc Pathol 4:223–234

    PubMed  CAS  Google Scholar 

  16. Kishimoto C, Shioji K, Kinoshita M, Iwase T, Tamaki S, Fujii M, Murashige A, Maruhashi H, Takeda S, Nonogi H, Hashimoto T (2003) Treatment of acute inflammatory cardiomyopathy with intravenous immunoglobulin ameliorates left ventricular function associated with suppression of inflammatory cytokines and decreased oxidative stress. Int J Cardiol 91:173–178

    Article  PubMed  Google Scholar 

  17. Klingel K, Sauter M, Bock CT, Szalay G, Schnorr JJ, Kandolf R (2004) Molecular pathology of inflammatory cardiomyopathy. Med Microbiol Immunol 193:101–107

    Article  PubMed  CAS  Google Scholar 

  18. Koufen P, Ruck A, Brdiczka D, Wendt S, Wallimann T, Stark G (1999) Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK). Biochem J 344:413–417

    Article  PubMed  CAS  Google Scholar 

  19. Kuhl U, Noutsias M, Seeberg B, Schultheiss HP (1996) Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 75:295–300

    Article  PubMed  CAS  Google Scholar 

  20. Kuhl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 111: 887–893

    Article  PubMed  Google Scholar 

  21. Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HP (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112:1965–1970

    Article  PubMed  Google Scholar 

  22. Kyto V, Lapatto R, Lakkisto P, Saraste A, Voipio-Pulkki LM, Vuorinen T, Pulkki K (2004) Glutathione depletion and cardiomyocyte apoptosis in viral myocarditis. Eur J Clin Invest 34:167–175

    Article  PubMed  CAS  Google Scholar 

  23. Lane JR, Neumann DA, LaFond-Walker A, Herskowitz A, Rose NR (1993) Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. J Immunol 151:1682–1690

    PubMed  CAS  Google Scholar 

  24. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2001) Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB J 15:1169–1180

    Article  PubMed  CAS  Google Scholar 

  25. Martin U, Jarasch N, Nestler M, Rassmann A, Munder T, Seitz S, Zell R, Wutzler P, Henke A (2007) Antiviral effects of pan-caspase inhibitors on the replication of coxsackievirus B3. Apoptosis 12:525–533

    Article  PubMed  CAS  Google Scholar 

  26. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD (1996) Creatine kinase system in failing and nonfailing human myocardium. Circulation 94:1894–1901

    PubMed  CAS  Google Scholar 

  27. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  28. Nose PS (1993) Cytokines and reperfusion injury. J Card Surg 8:305–308

    PubMed  CAS  Google Scholar 

  29. Ozcan C, Bienengraeber M, Hodgson DM, Mann DL, Terzic A (2003) Mitochondrial tolerance to stress impaired in failing heart. J Mol Cell Cardiol 35:1161–1166

    Article  PubMed  CAS  Google Scholar 

  30. Pauschinger M, Rutschow S, Chandrasekharan K, Westermann D, Weitz A, Peter SL, Zeichhardt H, Poller W, Noutsias M, Li J, Schultheiss HP, Tschope C (2005) Carvedilol improves left ventricular function in murine coxsackievirus-induced acute myocarditis association with reduced myocardial interleukin-1beta and MMP-8 expression and a modulated immune response. Eur J Heart Fail 7:444–452

    Article  PubMed  CAS  Google Scholar 

  31. Qin W, Khuchua Z, Cheng J, Boero J, Payne RM, Strauss AW (1998) Molecular characterization of the creatine kinases and some historical perspectives. Mol Cell Biochem 184:153–167

    Article  PubMed  CAS  Google Scholar 

  32. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103:60–68

    Article  PubMed  CAS  Google Scholar 

  33. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273

    Article  PubMed  CAS  Google Scholar 

  34. Schlattner U, Mockli N, Speer O, Werner S, Wallimann T (2002) Creatine kinase and creatine transporter in normal, wounded, and diseased skin. J Invest Dermatol 118:416–423

    Article  PubMed  CAS  Google Scholar 

  35. Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762:164–180

    PubMed  CAS  Google Scholar 

  36. Schultheiss HP, Schulze K, Dorner A (1996) Significance of the adenine nucleotide translocator in the pathogenesis of viral heart disease. Mol Cell Biochem 163–164:319–327

    Article  PubMed  Google Scholar 

  37. Schulze K, Schultheiss HP (1995) The role of the ADP/ATP carrier in the pathogenesis of viral heart disease. Eur Heart J 160:64–67

    Google Scholar 

  38. Schulze K, Witzenbichler B, Christmann C, Schultheiss HP (1999) Disturbance of myocardial energy metabolism in experimental virus myocarditis by antibodies against the adenine nucleotide translocator. Cardiovasc Res 44:91–100

    Article  PubMed  CAS  Google Scholar 

  39. Shen W, Spindler M, Higgins MA, Jin N, Gill RM, Bloem LJ, Ryan TP, Ingwall JS (2005) The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system. J Mol Cell Cardiol 39:537–544

    Article  PubMed  CAS  Google Scholar 

  40. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G. (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  PubMed  CAS  Google Scholar 

  41. Smith A (1967) Preparation, properties and conditions for assay of mitochondria; slaughterhouse material, small scale. Methods Enzymol 10:81–86

    Article  CAS  Google Scholar 

  42. Spindler M, Engelhardt S, Niebler R, Wagner H, Hein L, Lohse MJ, Neubauer S (2003) Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in beta(1)-adrenergic receptor transgenic mice. J Mol Cell Cardiol 35:389–397

    Article  PubMed  CAS  Google Scholar 

  43. Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699

    Article  PubMed  CAS  Google Scholar 

  44. Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van de Sand A, Konietzka I, Büchert A, Krüger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization: Signal transduction through a squence of nitric oxide, tumor necrosis factor-α, and sphingosine Circulation Research 90:807–813

    Article  PubMed  CAS  Google Scholar 

  45. Tokarska-Schlattner M, Zaugg M, Da SR, Lucchinetti E, Schaub MC, Wallimann T, Schlattner U (2005) Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol 289:H37–H47

    Article  PubMed  CAS  Google Scholar 

  46. Vendelin M, Lemba M, Saks VA (2004) Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase. Biophys J 87:696–713

    Article  PubMed  CAS  Google Scholar 

  47. Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13

    Article  PubMed  CAS  Google Scholar 

  48. Vyssokikh MY, Brdiczka D (2003) The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50:389–404

    PubMed  CAS  Google Scholar 

  49. Vyssokikh M, Brdiczka D (2004) VDAC and peripheral channelling complexes in health and disease. Mol Cell Biochem 256–257:117–126

    Article  PubMed  Google Scholar 

  50. Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133–134:193–220

    Article  PubMed  Google Scholar 

  51. Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, Kraft T, Stolz M (1998) Creatine kinase: an enzyme with a central role in cellular energy metabolism. MAGMA 6:116–119

    Article  PubMed  CAS  Google Scholar 

  52. Wolosker H, Panizzutti R, Engelender S (1996) Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Lett 392: 274–276

    Article  PubMed  CAS  Google Scholar 

  53. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406

    Article  PubMed  CAS  Google Scholar 

  54. Zhang HM, Yanagawa B, Cheung P, Luo H, Yuan J, Chau D, Wang A, Bohunek L, Wilson JE, McManus BM, Yang D (2002) Nip21 gene expression reduces coxsackievirus B3 replication by promoting apoptotic cell death via a mitochondria-dependent pathway. Circ Res 90:1251–1258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Deutsche Forschungsgemeinschaft, SFB-Transregio 19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Dörner PhD.

Additional information

L. Ebermann and C. Piper have equally contributed to this work.

Returned for 1. Revision: 22 July 2008 1. Revision received: 20 October 2008

Returned for 2. Revision: 26 November 2008 2. Revision received: 3 December 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebermann, L., Piper, C., Kühl, U. et al. Impact of myocardial inflammation on cytosolic and mitochondrial creatine kinase activity and expression. Basic Res Cardiol 104, 247–257 (2009). https://doi.org/10.1007/s00395-008-0773-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0773-5

Keywords

Navigation